論文の概要: Factor Representation and Decision Making in Stock Markets Using Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2108.01758v1
- Date: Tue, 3 Aug 2021 21:31:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 13:09:53.574344
- Title: Factor Representation and Decision Making in Stock Markets Using Deep
Reinforcement Learning
- Title(参考訳): 深層強化学習を用いた株式市場における因子表現と意思決定
- Authors: Zhaolu Dong, Shan Huang, Simiao Ma, Yining Qian
- Abstract要約: 我々は,S&P500株のポートフォリオ選択を定期的に行うために,直接強化学習を用いたポートフォリオ管理システムを構築している。
その結果、市場条件と最適ポートフォリオ割り当ての効果的な学習は、平均的市場を著しく上回る可能性が示唆された。
- 参考スコア(独自算出の注目度): 1.242591017155152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement learning is a branch of unsupervised learning in which an
agent learns to act based on environment state in order to maximize its total
reward. Deep reinforcement learning provides good opportunity to model the
complexity of portfolio choice in high-dimensional and data-driven environment
by leveraging the powerful representation of deep neural networks. In this
paper, we build a portfolio management system using direct deep reinforcement
learning to make optimal portfolio choice periodically among S\&P500 underlying
stocks by learning a good factor representation (as input). The result shows
that an effective learning of market conditions and optimal portfolio
allocations can significantly outperform the average market.
- Abstract(参考訳): 深層強化学習は教師なし学習の一分野であり、エージェントはその報酬を最大化するために環境状態に基づいて行動することを学ぶ。
深層強化学習は、深層ニューラルネットワークの強力な表現を利用して、高次元およびデータ駆動環境におけるポートフォリオ選択の複雑さをモデル化する良い機会を提供する。
本稿では,直接深層強化学習を用いたポートフォリオ管理システムを構築し,適切な因子表現(入力として)を学習することにより,s\&p500系株式の最適ポートフォリオ選択を定期的に行う。
その結果、市場条件と最適ポートフォリオ割り当ての効果的な学習は、平均的市場を著しく上回ることを示した。
関連論文リスト
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
本研究では,リスクの高い環境に適した強化学習に基づくポートフォリオ管理モデルを提案する。
マルチヘッドアテンションを持つ畳み込みニューラルネットワークを用いたソフトアクタ・クリティカル(SAC)エージェントを用いてモデルを実装した。
市場のボラティリティ(変動性)が変化する2つの16カ月間にわたってテストされたこのモデルは、ベンチマークを著しく上回った。
論文 参考訳(メタデータ) (2024-08-09T23:36:58Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - A Comparative Analysis of Portfolio Optimization Using Mean-Variance,
Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian
Stock Market [0.0]
本稿では,3つのポートフォリオ最適化手法の性能の比較分析を行う。
ポートフォリオは、いくつかの株価データに基づいてトレーニングされ、テストされ、そのパフォーマンスは、年次リターン、年次リスク、シャープ比率で比較される。
論文 参考訳(メタデータ) (2023-05-27T16:38:18Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
資産配分とは、ポートフォリオの資産を常に再分配することでリスクと報酬のバランスをとることを目的とした投資戦略である。
我々は、多くの最適化手法の有効性と信頼性を決定するために、広範囲なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2022-07-14T14:44:04Z) - Deep reinforcement learning for portfolio management based on the
empirical study of chinese stock market [3.5952664589125916]
本論文では,最新の技術である深層強化学習をポートフォリオ管理に適用できることを検証する。
実験では、市場のリターン率を表すCSI300や、ランダムに選択されたCSI500の構成成分など、ランダムに選択されたポートフォリオにモデルを使用。
論文 参考訳(メタデータ) (2020-12-26T16:25:20Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System [23.657021288146158]
マルチエージェント強化学習に基づくポートフォリオ管理システム(MAPS)を提案する。
MAPSは、各エージェントが独立した「投資者」であり、独自のポートフォリオを作成する協調システムである。
米国の12年間の市場データによる実験の結果、MAPSはシャープ比でベースラインの大半を上回っている。
論文 参考訳(メタデータ) (2020-07-10T14:08:12Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。