論文の概要: MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System
- arxiv url: http://arxiv.org/abs/2007.05402v1
- Date: Fri, 10 Jul 2020 14:08:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 21:23:18.818051
- Title: MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System
- Title(参考訳): MAPS:マルチエージェント強化学習に基づくポートフォリオ管理システム
- Authors: Jinho Lee, Raehyun Kim, Seok-Won Yi, Jaewoo Kang
- Abstract要約: マルチエージェント強化学習に基づくポートフォリオ管理システム(MAPS)を提案する。
MAPSは、各エージェントが独立した「投資者」であり、独自のポートフォリオを作成する協調システムである。
米国の12年間の市場データによる実験の結果、MAPSはシャープ比でベースラインの大半を上回っている。
- 参考スコア(独自算出の注目度): 23.657021288146158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating an investment strategy using advanced deep learning methods in
stock markets has recently been a topic of interest. Most existing deep
learning methods focus on proposing an optimal model or network architecture by
maximizing return. However, these models often fail to consider and adapt to
the continuously changing market conditions. In this paper, we propose the
Multi-Agent reinforcement learning-based Portfolio management System (MAPS).
MAPS is a cooperative system in which each agent is an independent "investor"
creating its own portfolio. In the training procedure, each agent is guided to
act as diversely as possible while maximizing its own return with a carefully
designed loss function. As a result, MAPS as a system ends up with a
diversified portfolio. Experiment results with 12 years of US market data show
that MAPS outperforms most of the baselines in terms of Sharpe ratio.
Furthermore, our results show that adding more agents to our system would allow
us to get a higher Sharpe ratio by lowering risk with a more diversified
portfolio.
- Abstract(参考訳): 近年、株式市場における先進的な深層学習手法による投資戦略の生成が注目されている。
既存のディープラーニング手法の多くは、リターンの最大化による最適モデルやネットワークアーキテクチャの提案に重点を置いている。
しかし、これらのモデルは、しばしば絶えず変化する市場の状況に適応し、考慮しない。
本稿では,マルチエージェント強化学習に基づくポートフォリオ管理システム(MAPS)を提案する。
MAPSは、各エージェントが独立した「投資者」であり、独自のポートフォリオを作成する協調システムである。
訓練手順では、各エージェントは、慎重に設計された損失関数で自身のリターンを最大化しながら、可能な限り多様に行動するように誘導される。
その結果、システムとしてのマップは、多様化したポートフォリオに終わる。
米国の12年間の市場データによる実験の結果、MAPSはシャープ比でベースラインの大半を上回っている。
さらに,システムにより多くのエージェントを追加することで,ポートフォリオの多様化によるリスク低減によるシャープ比の向上が期待できることを示す。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
ポートフォリオ管理とアルファマイニングにおける定量株式投資のための新しい枠組みを提案する。
本稿では,大規模言語モデル(LLM)がマルチモーダル財務データからアルファ因子を抽出する枠組みを提案する。
中国株式市場の実験は、この枠組みが最先端のベースラインを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2024-09-10T07:42:28Z) - Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer [1.4061979259370274]
ヘッジファンドポートフォリオ構築のためのPolyModel理論を実装した。
我々は,長期アルファ,長期比,SVaRなどの定量的尺度を作成する。
また、最新のディープラーニング技術(iTransformer)を使って、上昇傾向を捉えています。
論文 参考訳(メタデータ) (2024-08-06T17:55:58Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
モデルフリーのアルゴリズムとして、深層強化学習(DRL)エージェントは、教師なしの方法で環境と対話することで学習し、決定する。
DRLエージェントとBlack-Litterman (BL)モデルを組み合わせたハイブリッドポートフォリオ最適化モデルを提案する。
我々のDRLエージェントは、様々な比較ポートフォリオ選択戦略と代替DRLフレームワークを、累積リターンで少なくとも42%上回っている。
論文 参考訳(メタデータ) (2024-02-23T16:01:37Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
q$-learningの過大評価は、シングルエージェント強化学習で広く研究されている重要な問題である。
ベースラインから逸脱する大きな関節動作値をペナライズする,新たな正規化ベースの更新方式を提案する。
本手法は,StarCraft IIマイクロマネジメントの課題に対して,一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-22T14:18:39Z) - A Modularized and Scalable Multi-Agent Reinforcement Learning-based
System for Financial Portfolio Management [7.6146285961466]
金融ポートフォリオマネジメントは強化学習(RL)において最も適用可能な問題の1つである
MSPMは、ポートフォリオ管理のためのモジュール化されたスケーラブルなアーキテクチャを備えた、新しいマルチエージェント強化学習ベースシステムである。
8年にわたる米株式市場のデータの実験は、MSPMが既存のベンチマークを上回るパフォーマンスで蓄積した利益がMSPMの有効性を証明している。
論文 参考訳(メタデータ) (2021-02-06T04:04:57Z) - Deep reinforcement learning for portfolio management based on the
empirical study of chinese stock market [3.5952664589125916]
本論文では,最新の技術である深層強化学習をポートフォリオ管理に適用できることを検証する。
実験では、市場のリターン率を表すCSI300や、ランダムに選択されたCSI500の構成成分など、ランダムに選択されたポートフォリオにモデルを使用。
論文 参考訳(メタデータ) (2020-12-26T16:25:20Z) - MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement
Learning [70.540936204654]
マルチエージェント強化学習のための新しい手法であるMAGnetを提案する。
我々は、最先端のMARLソリューションよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2020-12-17T17:19:36Z) - Is Independent Learning All You Need in the StarCraft Multi-Agent
Challenge? [100.48692829396778]
独立PPO (Independent PPO) は独立学習の一種であり、各エージェントはその局所値関数を単純に推定する。
IPPOの強い性能は、ある種の非定常性に対する堅牢性に起因する可能性がある。
論文 参考訳(メタデータ) (2020-11-18T20:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。