論文の概要: An Informative Path Planning Framework for Active Learning in UAV-based
Semantic Mapping
- arxiv url: http://arxiv.org/abs/2302.03347v3
- Date: Wed, 6 Sep 2023 11:20:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 19:47:33.899591
- Title: An Informative Path Planning Framework for Active Learning in UAV-based
Semantic Mapping
- Title(参考訳): UAVに基づくセマンティックマッピングにおける能動学習のためのインフォームティブパス計画フレームワーク
- Authors: Julius R\"uckin, Federico Magistri, Cyrill Stachniss, Marija Popovi\'c
- Abstract要約: 無人航空機(UAV)は、航空地図や一般的な監視作業に頻繁に使用される。
近年のディープラーニングの進歩により、画像の自動セマンティックセグメンテーションが実現され、大規模な複雑な環境の解釈が容易になった。
モデル再学習のための情報的訓練画像を自律的に取得するための,UAVのための新しい汎用的計画フレームワークを提案する。
- 参考スコア(独自算出の注目度): 27.460481202195012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) are frequently used for aerial mapping and
general monitoring tasks. Recent progress in deep learning enabled automated
semantic segmentation of imagery to facilitate the interpretation of
large-scale complex environments. Commonly used supervised deep learning for
segmentation relies on large amounts of pixel-wise labelled data, which is
tedious and costly to annotate. The domain-specific visual appearance of aerial
environments often prevents the usage of models pre-trained on publicly
available datasets. To address this, we propose a novel general planning
framework for UAVs to autonomously acquire informative training images for
model re-training. We leverage multiple acquisition functions and fuse them
into probabilistic terrain maps. Our framework combines the mapped acquisition
function information into the UAV's planning objectives. In this way, the UAV
adaptively acquires informative aerial images to be manually labelled for model
re-training. Experimental results on real-world data and in a photorealistic
simulation show that our framework maximises model performance and drastically
reduces labelling efforts. Our map-based planners outperform state-of-the-art
local planning.
- Abstract(参考訳): 無人航空機(UAV)は、航空地図や一般的な監視作業に頻繁に使用される。
近年のディープラーニングの進歩により、画像の自動セマンティックセグメンテーションが実現され、大規模な複雑な環境の解釈が容易になった。
一般に、セグメンテーションのための教師付きディープラーニングは、大量のピクセル単位でラベル付けされたデータに依存している。
ドメイン固有の航空環境の外観は、しばしば公開データセットで事前訓練されたモデルの使用を妨げる。
そこで,本稿では,uavsがモデル再学習のための情報的訓練画像を自律的に取得するための,新しい汎用的計画フレームワークを提案する。
複数の取得関数を活用し、確率的地形マップに融合する。
我々のフレームワークは、地図化された取得関数情報をUAVの計画目標に組み込む。
このようにして、UAVは、モデル再訓練のために手動でラベル付けされる情報的空中画像を取得する。
実世界のデータとフォトリアリスティックシミュレーションによる実験結果から,本フレームワークはモデル性能を最大化し,ラベリング労力を劇的に削減することが示された。
地図ベースのプランナーは、最先端の地域計画より優れています。
関連論文リスト
- Game4Loc: A UAV Geo-Localization Benchmark from Game Data [0.0]
クロスビューペアデータの部分的マッチングを含む,より実用的なUAV測位タスクを提案する。
実験により,UAV測地のためのデータとトレーニング手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-25T13:33:28Z) - UAV (Unmanned Aerial Vehicles): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking [0.0]
無人航空機(UAV)は、さまざまな研究領域におけるデータの収集と分析のプロセスに革命をもたらした。
UAVデータセットは、衛星画像、ドローンが撮影した画像、ビデオなど、さまざまな種類のデータで構成されている。
これらのデータセットは、災害被害評価、航空監視、物体認識、追跡において重要な役割を果たす。
論文 参考訳(メタデータ) (2024-09-05T04:47:36Z) - Automatic UAV-based Airport Pavement Inspection Using Mixed Real and
Virtual Scenarios [3.0874677990361246]
本稿では,UAVが捉えた画像を用いて,舗装の苦悩を自動的に識別する視覚的アプローチを提案する。
提案手法は,画像の欠陥を分割する深層学習(DL)に基づいている。
合成および実訓練画像からなる混合データセットを使用することで、実アプリケーションシナリオでトレーニングモデルをテストする場合、より良い結果が得られることを示す。
論文 参考訳(メタデータ) (2024-01-11T16:30:07Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - Learning Models as Functionals of Signed-Distance Fields for
Manipulation Planning [51.74463056899926]
本研究では,シーン内のオブジェクトを表す符号付き距離場の目的を学習する,最適化に基づく操作計画フレームワークを提案する。
オブジェクトを符号付き距離場として表現することは、ポイントクラウドや占有率の表現よりも高い精度で、様々なモデルの学習と表現を可能にする。
論文 参考訳(メタデータ) (2021-10-02T12:36:58Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
本研究では,大規模自律飛行とリアルタイムセマンティックマッピングを,挑戦的なアンダーキャノピー環境下で実現可能な統合システムを提案する。
我々は、スキャン全体で関連付けられ、木のトランクモデルと同様にロボットのポーズを制約するために使用されるLiDARデータから、木の幹と地面の平面を検出し、モデル化する。
ドリフト補償機構は、プランナー最適性とコントローラ安定性を維持しつつ、セマンティックSLAM出力を用いたドリフトをリアルタイムで最小化するように設計されている。
論文 参考訳(メタデータ) (2021-09-14T07:24:53Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
私たちのアプローチの重要な特徴は、ディープラーニングベースのアーキテクチャのための新しい精度モデルです。
実地フィールドデータを用いた精密農業における作物・雑草分断の適用性について,本研究のアプローチを評価した。
論文 参考訳(メタデータ) (2021-08-04T07:30:04Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - OpenREALM: Real-time Mapping for Unmanned Aerial Vehicles [62.997667081978825]
OpenREALMは無人航空機(UAV)のリアルタイムマッピングフレームワークである
異なる操作モードにより、OpenREALMは近似平面場を仮定して単純な縫合を行うことができる。
すべてのモードにおいて、結果のマップの漸進的な進捗は、地上のオペレータによってライブで見ることができる。
論文 参考訳(メタデータ) (2020-09-22T12:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。