論文の概要: Personalized Federated Learning with Clustering: Non-IID Heart Rate
Variability Data Application
- arxiv url: http://arxiv.org/abs/2108.01903v1
- Date: Wed, 4 Aug 2021 08:24:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 13:25:25.149384
- Title: Personalized Federated Learning with Clustering: Non-IID Heart Rate
Variability Data Application
- Title(参考訳): クラスタリングによる個人化フェデレーション学習:非IID心拍変動データ応用
- Authors: Joo Hun Yoo, Ha Min Son, Hyejun Jeong, Eun-Hye Jang, Ah Young Kim, Han
Young Yu, Hong Jin Jeon, Tai-Myoung Chung
- Abstract要約: 本稿では,階層的クラスタリングに基づくFLプロセスであるPersonalized Federated Cluster Modelsを提案し,心拍変動からうつ病の重症度を予測する。
クライアントがよりパーソナライズされたモデルを受けられるようにすることで、非IIDデータによる問題に対処し、重大度予測の精度が向上することを示す。
- 参考スコア(独自算出の注目度): 0.1465840097113565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While machine learning techniques are being applied to various fields for
their exceptional ability to find complex relations in large datasets, the
strengthening of regulations on data ownership and privacy is causing
increasing difficulty in its application to medical data. In light of this,
Federated Learning has recently been proposed as a solution to train on private
data without breach of confidentiality. This conservation of privacy is
particularly appealing in the field of healthcare, where patient data is highly
confidential. However, many studies have shown that its assumption of
Independent and Identically Distributed data is unrealistic for medical data.
In this paper, we propose Personalized Federated Cluster Models, a hierarchical
clustering-based FL process, to predict Major Depressive Disorder severity from
Heart Rate Variability. By allowing clients to receive more personalized model,
we address problems caused by non-IID data, showing an accuracy increase in
severity prediction. This increase in performance may be sufficient to use
Personalized Federated Cluster Models in many existing Federated Learning
scenarios.
- Abstract(参考訳): 大規模データセットに複雑な関係を見出す能力があるため、機械学習技術は様々な分野に適用されているが、データの所有権とプライバシに関する規制が強化され、医療データへの適用が難しくなっている。
これを踏まえて、フェデレートラーニング(Federated Learning)は、機密を侵害することなくプライベートデータをトレーニングするソリューションとして最近提案されている。
このプライバシーの保護は、患者データが高度に機密である医療の分野で特に魅力的である。
しかし、独立分散データの仮定は医療データには非現実的であることが多くの研究で示されている。
本稿では,心拍変動から主要な抑うつ性障害の重症度を予測するために,階層的クラスタリングに基づくflプロセスであるパーソナライズされたフェデレーションクラスタモデルを提案する。
クライアントがよりパーソナライズされたモデルを受信できるようにすることで、非IIDデータによる問題に対処し、重大度予測の精度の向上を示す。
このパフォーマンス向上は、既存のフェデレーション学習シナリオの多くでパーソナライズされたフェデレーションクラスタモデルを使用するのに十分である。
関連論文リスト
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Enhancing Performance for Highly Imbalanced Medical Data via Data Regularization in a Federated Learning Setting [6.22153888560487]
本手法の目的は,心血管疾患予測のためのモデル性能を向上させることである。
本手法は, 心臓血管疾患予測のための4つのデータセットにまたがって評価され, 異なるクライアントに分散している。
論文 参考訳(メタデータ) (2024-05-30T19:15:38Z) - A Distributed Privacy Preserving Model for the Detection of Alzheimer's Disease [0.0]
本稿では,分散データからトレーニングできるHIPAA準拠のフレームワークを提案する。
次に,アルツハイマー病(AD)検出のための多モード垂直フェデレーションモデルを提案する。
ここで提案されたVFLアーキテクチャは、多様な医療データソースをまたいだ協調学習を可能にする、新しい分散アーキテクチャを提供する。
論文 参考訳(メタデータ) (2023-12-15T22:09:04Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
医療分野では、患者と臨床データの均一性を生かして、多施設共同研究がより一般化可能な発見をもたらすことがしばしばある。
最近のプライバシー規制は、データの共有を妨げ、その結果、診断と予後をサポートする機械学習ベースのソリューションを考案する。
ローカルノードの機能を統合する分散分散手法を提案し、プライバシを維持しながら複数のデータセットをまたいで一般化可能なモデルを提供する。
論文 参考訳(メタデータ) (2022-06-20T23:49:38Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
フェデレートラーニング(FL)のような協調機械学習技術は、データ転送なしで効果的に大規模なデータセット上でモデルのトレーニングを可能にする。
近年のイニシアチブでは、FLで訓練されたセグメンテーションモデルが、局所的に訓練されたモデルと同様のパフォーマンスを達成できることが示されている。
しかし、FLは完全なプライバシ保護技術ではなく、プライバシ中心の攻撃は秘密の患者データを開示することができる。
論文 参考訳(メタデータ) (2021-07-06T12:57:32Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
我々は,フェデレートラーニングの文脈において,プライバシを提供するための最初の構文的アプローチを提案する。
当社のアプローチは,プライバシの保護レベルをサポートしながら,実用性やモデルの性能を最大化することを目的としている。
医療領域における2つの重要な課題について,100万人の患者の実世界電子健康データを用いて包括的実証評価を行った。
論文 参考訳(メタデータ) (2020-02-21T02:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。