論文の概要: MRCpy: A Library for Minimax Risk Classifiers
- arxiv url: http://arxiv.org/abs/2108.01952v2
- Date: Mon, 24 Apr 2023 15:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 01:01:04.150967
- Title: MRCpy: A Library for Minimax Risk Classifiers
- Title(参考訳): mrcpy:minimaxリスク分類のためのライブラリ
- Authors: Kartheek Bondugula, Veronica Alvarez, Jos\'e I. Segovia-Mart\'in,
Aritz P\'erez, Santiago Mazuelas
- Abstract要約: MRCpyライブラリは,ロバストなリスク最小化に基づいて,0-1-lossを利用できるMRCを実装している。
MRCpyは、MRCの異なる変種に対する統一インターフェースを提供し、人気のあるPythonライブラリの標準に従っている。
- 参考スコア(独自算出の注目度): 2.519906683279153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing libraries for supervised classification implement techniques that
are based on empirical risk minimization and utilize surrogate losses. We
present MRCpy library that implements minimax risk classifiers (MRCs) that are
based on robust risk minimization and can utilize 0-1-loss. Such techniques
give rise to a manifold of classification methods that can provide tight bounds
on the expected loss. MRCpy provides a unified interface for different variants
of MRCs and follows the standards of popular Python libraries. The presented
library also provides implementation for popular techniques that can be seen as
MRCs such as L1-regularized logistic regression, zero-one adversarial, and
maximum entropy machines. In addition, MRCpy implements recent feature mappings
such as Fourier, ReLU, and threshold features. The library is designed with an
object-oriented approach that facilitates collaborators and users.
- Abstract(参考訳): 教師付き分類のための既存のライブラリは、経験的リスク最小化に基づいて、代理損失を利用する手法を実装している。
MRCpyライブラリは,ロバストリスク最小化に基づいて,0-1-lossを利用できるMRCを実装している。
このような手法は、期待される損失に厳密な境界を与えることのできる分類方法の多様体を生み出す。
MRCpyは、MRCの異なる変種に対する統一インターフェースを提供し、人気のあるPythonライブラリの標準に従っている。
上述のライブラリはまた、L1正規化ロジスティック回帰、ゼロワン逆数、最大エントロピーマシンなどのMRCとして見られるような一般的なテクニックの実装も提供する。
さらに、MRCpyはFourier、ReLU、しきい値といった最近の機能マッピングを実装している。
このライブラリは、共同作業者やユーザを支援するオブジェクト指向アプローチで設計されている。
関連論文リスト
- $\texttt{skwdro}$: a library for Wasserstein distributionally robust machine learning [6.940992962425166]
skwdroは、堅牢な機械学習モデルをトレーニングするためのPythonライブラリである。
一般的な目的のために、Scikit-learn互換の推定器と、PyTorchモジュール用のラッパーの両方を備えている。
論文 参考訳(メタデータ) (2024-10-28T17:16:00Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
学習検索(LSR)は、クエリとドキュメントを疎語彙ベクトルにエンコードするニューラルネットワークのファミリーである。
テキスト画像検索に焦点をあて,マルチモーダル領域へのLSRの適用について検討する。
LexLIPやSTAIRのような現在のアプローチでは、大規模なデータセットで複雑なマルチステップのトレーニングが必要です。
提案手法は, 密度ベクトルを凍結密度モデルからスパース語彙ベクトルへ効率的に変換する。
論文 参考訳(メタデータ) (2024-02-27T14:21:56Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeLは継続学習のためのライブラリで、PyTorchとJAXフレームワークの両方をサポートする。
それは、正規化ベースのアプローチ、リプレイベースのアプローチ、ハイブリッドアプローチを含む、幅広い連続学習アルゴリズムのための統一インターフェースを提供する。
私たちはSequeLをオープンソースライブラリとしてリリースし、研究者や開発者が自身の目的で簡単にライブラリを実験し拡張することができます。
論文 参考訳(メタデータ) (2023-04-21T10:00:22Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM は Heterogeneous-Hidden Markov Models (HHMM) のオブジェクト指向Python実装である。
PyHHMMは、異種観測モデル、データ推論の欠如、異なるモデルの順序選択基準、半教師付きトレーニングなど、同様のフレームワークではサポートされない機能を強調している。
PyHHMMは、numpy、scipy、scikit-learn、およびシーボーンPythonパッケージに依存しており、Apache-2.0ライセンスの下で配布されている。
論文 参考訳(メタデータ) (2022-01-12T07:32:36Z) - IMBENS: Ensemble Class-imbalanced Learning in Python [26.007498723608155]
imbensはオープンソースのPythonツールボックスで、クラス不均衡なデータに対してアンサンブル学習アルゴリズムを実装し、デプロイする。
imbensはMITオープンソースライセンスでリリースされており、Python Package Index (PyPI)からインストールすることができる。
論文 参考訳(メタデータ) (2021-11-24T20:14:20Z) - Scikit-dimension: a Python package for intrinsic dimension estimation [58.8599521537]
この技術ノートは、固有次元推定のためのオープンソースのPythonパッケージであるtextttscikit-dimensionを紹介している。
textttscikit-dimensionパッケージは、Scikit-learnアプリケーションプログラミングインターフェイスに基づいて、既知のID推定子のほとんどを均一に実装する。
パッケージを簡潔に記述し、実生活と合成データにおけるID推定手法の大規模(500以上のデータセット)ベンチマークでその使用を実証する。
論文 参考訳(メタデータ) (2021-09-06T16:46:38Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - Small-Text: Active Learning for Text Classification in Python [23.87081733039124]
small-textはPython用の使いやすいアクティブラーニングライブラリである。
シングルラベルとマルチラベルのテキスト分類のためのプールベースのアクティブラーニングを提供する。
論文 参考訳(メタデータ) (2021-07-21T19:23:56Z) - Picasso: A Sparse Learning Library for High Dimensional Data Analysis in
R and Python [77.33905890197269]
本稿では,様々なスパース学習問題に対して,経路座標を統一的に最適化する新しいライブラリについて述べる。
ライブラリはR++でコード化されており、ユーザフレンドリーなスパース実験を行っている。
論文 参考訳(メタデータ) (2020-06-27T02:39:24Z) - Kernel methods library for pattern analysis and machine learning in
python [0.0]
kernelmethodsライブラリは、ドメインに依存しない方法で、python MLエコシステムにおける重要な空白を埋めます。
このライブラリは、カーネルベースの操作を効率的にするための、よく定義された多くのクラスを提供する。
論文 参考訳(メタデータ) (2020-05-27T16:44:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。