論文の概要: Lung Sound Classification Using Co-tuning and Stochastic Normalization
- arxiv url: http://arxiv.org/abs/2108.01991v1
- Date: Wed, 4 Aug 2021 12:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 18:05:18.359427
- Title: Lung Sound Classification Using Co-tuning and Stochastic Normalization
- Title(参考訳): co-tuning と stochastic normalization を用いた肺音の分類
- Authors: Truc Nguyen, Franz Pernkopf
- Abstract要約: 事前学習されたモデルの知識は、バニラファインチューニング、コチューニング、正規化、コチューニングと正規化の組み合わせを用いて伝達される。
提案システムは, 両データセットの異常な肺音と呼吸器疾患に対して, 最先端の肺音分類システムよりも優れていた。
- 参考スコア(独自算出の注目度): 26.399917342840265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we use pre-trained ResNet models as backbone architectures for
classification of adventitious lung sounds and respiratory diseases. The
knowledge of the pre-trained model is transferred by using vanilla fine-tuning,
co-tuning, stochastic normalization and the combination of the co-tuning and
stochastic normalization techniques. Furthermore, data augmentation in both
time domain and time-frequency domain is used to account for the class
imbalance of the ICBHI and our multi-channel lung sound dataset. Additionally,
we apply spectrum correction to consider the variations of the recording device
properties on the ICBHI dataset. Empirically, our proposed systems mostly
outperform all state-of-the-art lung sound classification systems for the
adventitious lung sounds and respiratory diseases of both datasets.
- Abstract(参考訳): 本稿では, 術前トレーニングしたResNetモデルを用いて, 冒険的な肺音と呼吸器疾患の分類を行う。
事前学習モデルの知識は,バニラファインチューニング,コチューニング,確率正規化,コチューニングと確率正規化の組み合わせを用いて伝達される。
さらに, 時間領域と時間周波数領域のデータの増大は, ICBHIと多チャンネル肺音データセットのクラス不均衡を考慮に入れている。
さらに、ICBHIデータセット上の記録装置特性の変動を考慮するためにスペクトル補正を適用した。
実験で提案したシステムは, 両データセットの異常な肺音と呼吸器疾患に対して, 最先端の肺音分類システムよりも優れていた。
関連論文リスト
- Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
条件付きラテント空間変分オートエンコーダ(CL-VAE)は、既知の不整形クラスと未知の不整形クラスを持つデータに対する異常検出のための前処理を改善した。
モデルでは異常検出の精度が向上し、MNISTデータセットで97.4%のAUCが達成された。
さらに、CL-VAEは、アンサンブルの利点、より解釈可能な潜在空間、モデルサイズに制限のある複雑なデータでパターンを学習する能力の増大を示す。
論文 参考訳(メタデータ) (2024-10-16T07:48:53Z) - Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
本稿では,大規模コークスデータセットを用いた自己教師型学習と教師型学習を併用したコークス病分類手法を提案する。
提案手法は、新型コロナウイルスの診断のための2つのベンチマークデータセットと、AUROC 92.5% の COPD/non-COPD 分類のためのプロプライエタリデータセットにおいて、先行技術よりも一貫して優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-08-28T09:40:40Z) - BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification [0.0]
音声サンプルのメタデータから派生した自由テキスト記述を用いて,事前学習したテキスト・オーディオ・マルチモーダルモデルを微調整する。
提案手法は,ICBHIデータセットの最先端性能を達成し,先行した最良値の1.17%を突破した。
論文 参考訳(メタデータ) (2024-06-10T20:49:54Z) - Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance [1.3686993145787067]
本稿では,条件付きニューラルボコーダとして音声拡散モデルを用いて,不均衡な呼吸音データを増やすための簡単なアプローチを提案する。
また, 合成音と実呼吸音の特徴を整合させ, 呼吸音の分類性能を向上させるために, 簡易かつ効果的な対向微調整法を実証した。
論文 参考訳(メタデータ) (2023-11-11T05:02:54Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
本稿では,潜在空間における混合表現を識別するために,新規かつ効果的なパッチ・ミクス・コントラスト学習を提案する。
提案手法はICBHIデータセット上での最先端性能を実現し,4.08%の改善により先行先行スコアを上回った。
論文 参考訳(メタデータ) (2023-05-23T13:04:07Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z) - CNN-MoE based framework for classification of respiratory anomalies and
lung disease detection [33.45087488971683]
本稿では,聴取分析のための頑健な深層学習フレームワークを提示し,検討する。
呼吸周期の異常を分類し、呼吸音の記録から病気を検出することを目的としている。
論文 参考訳(メタデータ) (2020-04-04T21:45:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。