Lung Sound Classification Using Co-tuning and Stochastic Normalization
- URL: http://arxiv.org/abs/2108.01991v1
- Date: Wed, 4 Aug 2021 12:16:02 GMT
- Title: Lung Sound Classification Using Co-tuning and Stochastic Normalization
- Authors: Truc Nguyen, Franz Pernkopf
- Abstract summary: The knowledge of the pre-trained model is transferred by using vanilla fine-tuning, co-tuning, normalization and the combination of the co-tuning and normalization techniques.
Our proposed systems mostly outperform all state-of-the-art lung sound classification systems for the adventitious lung sounds and respiratory diseases of both datasets.
- Score: 26.399917342840265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we use pre-trained ResNet models as backbone architectures for
classification of adventitious lung sounds and respiratory diseases. The
knowledge of the pre-trained model is transferred by using vanilla fine-tuning,
co-tuning, stochastic normalization and the combination of the co-tuning and
stochastic normalization techniques. Furthermore, data augmentation in both
time domain and time-frequency domain is used to account for the class
imbalance of the ICBHI and our multi-channel lung sound dataset. Additionally,
we apply spectrum correction to consider the variations of the recording device
properties on the ICBHI dataset. Empirically, our proposed systems mostly
outperform all state-of-the-art lung sound classification systems for the
adventitious lung sounds and respiratory diseases of both datasets.
Related papers
- Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
We propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set.
Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
arXiv Detail & Related papers (2024-08-28T09:40:40Z) - BTS: Bridging Text and Sound Modalities for Metadata-Aided Respiratory Sound Classification [0.0]
We fine-tune a pretrained text-audio multimodal model using free-text descriptions derived from the sound samples' metadata.
Our method achieves state-of-the-art performance on the ICBHI dataset, surpassing the previous best result by a notable margin of 1.17%.
arXiv Detail & Related papers (2024-06-10T20:49:54Z) - Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance [1.3686993145787067]
We propose a straightforward approach to augment imbalanced respiratory sound data using an audio diffusion model as a conditional neural vocoder.
We also demonstrate a simple yet effective adversarial fine-tuning method to align features between the synthetic and real respiratory sound samples to improve respiratory sound classification performance.
arXiv Detail & Related papers (2023-11-11T05:02:54Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
We introduce a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space.
Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.
arXiv Detail & Related papers (2023-05-23T13:04:07Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z) - CNN-MoE based framework for classification of respiratory anomalies and
lung disease detection [33.45087488971683]
This paper presents and explores a robust deep learning framework for auscultation analysis.
It aims to classify anomalies in respiratory cycles and detect disease, from respiratory sound recordings.
arXiv Detail & Related papers (2020-04-04T21:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.