Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification
- URL: http://arxiv.org/abs/2305.14032v4
- Date: Wed, 22 Nov 2023 07:01:36 GMT
- Title: Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification
- Authors: Sangmin Bae, June-Woo Kim, Won-Yang Cho, Hyerim Baek, Soyoun Son,
Byungjo Lee, Changwan Ha, Kyongpil Tae, Sungnyun Kim, Se-Young Yun
- Abstract summary: We introduce a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space.
Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.
- Score: 19.180927437627282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Respiratory sound contains crucial information for the early diagnosis of
fatal lung diseases. Since the COVID-19 pandemic, there has been a growing
interest in contact-free medical care based on electronic stethoscopes. To this
end, cutting-edge deep learning models have been developed to diagnose lung
diseases; however, it is still challenging due to the scarcity of medical data.
In this study, we demonstrate that the pretrained model on large-scale visual
and audio datasets can be generalized to the respiratory sound classification
task. In addition, we introduce a straightforward Patch-Mix augmentation, which
randomly mixes patches between different samples, with Audio Spectrogram
Transformer (AST). We further propose a novel and effective Patch-Mix
Contrastive Learning to distinguish the mixed representations in the latent
space. Our method achieves state-of-the-art performance on the ICBHI dataset,
outperforming the prior leading score by an improvement of 4.08%.
Related papers
- Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
We propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set.
Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
arXiv Detail & Related papers (2024-08-28T09:40:40Z) - Rene: A Pre-trained Multi-modal Architecture for Auscultation of Respiratory Diseases [5.810320353233697]
We introduce Rene, a pioneering large-scale model tailored for respiratory sound recognition.
Our innovative approach applies a pre-trained speech recognition model to process respiratory sounds.
We have developed a real-time respiratory sound discrimination system utilizing the Rene architecture.
arXiv Detail & Related papers (2024-05-13T03:00:28Z) - Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification [1.690115983364313]
We introduce cross-domain adaptation techniques, which transfer the knowledge from a source domain to a distinct target domain.
In particular, by considering different stethoscope types as individual domains, we propose a novel stethoscope-guided supervised contrastive learning approach.
The experimental results on the ICBHI dataset demonstrate that the proposed methods are effective in reducing the domain dependency and achieving the ICBHI Score of 61.71%, which is a significant improvement of 2.16% over the baseline.
arXiv Detail & Related papers (2023-12-15T08:34:31Z) - Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance [1.3686993145787067]
We propose a straightforward approach to augment imbalanced respiratory sound data using an audio diffusion model as a conditional neural vocoder.
We also demonstrate a simple yet effective adversarial fine-tuning method to align features between the synthetic and real respiratory sound samples to improve respiratory sound classification performance.
arXiv Detail & Related papers (2023-11-11T05:02:54Z) - Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes [3.2458203725405976]
This work presents a novel approach leveraging digital stethoscope technology for automatic respiratory disease classification and biometric analysis.
By leveraging one of the largest publicly available medical database of respiratory sounds, we train machine learning models to classify various respiratory health conditions.
Our approach achieves high accuracy in both binary classification (89% balanced accuracy for healthy vs. diseased) and multi-class classification (72% balanced accuracy for specific diseases like pneumonia and COPD)
arXiv Detail & Related papers (2023-09-12T23:54:00Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
We propose an interpretable instrumental variable (IV) learning framework to eliminate the spurious association and obtain accurate causal representation.
Our approach's performance is demonstrated using the MIMIC-CXR, NIH ChestX-ray 14, and CheXpert datasets.
arXiv Detail & Related papers (2023-05-20T03:12:23Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.