論文の概要: Learning to generate shape from global-local spectra
- arxiv url: http://arxiv.org/abs/2108.02161v1
- Date: Wed, 4 Aug 2021 16:39:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 13:16:21.856814
- Title: Learning to generate shape from global-local spectra
- Title(参考訳): グローバル局所スペクトルから形状を生成するための学習
- Authors: Marco Pegoraro (1), Riccardo Marin (2), Umberto Castellani (1), Simone
Melzi (2), Emanuele Rodol\`a (2) ((1) University of Verona, (2) Sapienza
University of Rome)
- Abstract要約: 我々は,この手法を,いわゆる形状-スペクトルパラダイムの最近の進歩の上に構築する。
我々は、スペクトルを自然なものとみなし、形状の多様性を符号化するために表現を使用する準備ができている。
提案手法は既存手法や代替手法と比較して改善された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a new learning-based pipeline for the generation of
3D shapes. We build our method on top of recent advances on the so called
shape-from-spectrum paradigm, which aims at recovering the full 3D geometric
structure of an object only from the eigenvalues of its Laplacian operator. In
designing our learning strategy, we consider the spectrum as a natural and
ready to use representation to encode variability of the shapes. Therefore, we
propose a simple decoder-only architecture that directly maps spectra to 3D
embeddings; in particular, we combine information from global and local
spectra, the latter being obtained from localized variants of the manifold
Laplacian. This combination captures the relations between the full shape and
its local parts, leading to more accurate generation of geometric details and
an improved semantic control in shape synthesis and novel editing applications.
Our results confirm the improvement of the proposed approach in comparison to
existing and alternative methods.
- Abstract(参考訳): 本稿では,3次元形状生成のための新しい学習ベースのパイプラインを提案する。
本手法は,ラプラシアン作用素の固有値からのみ対象物の完全な3次元幾何学的構造を復元することを目的とした,いわゆる形状-スペクトルパラダイムの最近の進歩の上に構築する。
学習戦略の設計において、スペクトルは自然であり、形状の可変性をエンコードするために表現を使用する準備ができていると考える。
したがって、スペクトルを3次元埋め込みに直接マッピングする単純なデコーダのみのアーキテクチャを提案し、特に、大域スペクトルと局所スペクトルの情報を結合し、後者は多様体ラプラシアンの局所化変種から得られる。
この組み合わせは、全形状とその局所部分の関係を捉え、より正確な幾何学的詳細の生成と、形状合成および新しい編集アプリケーションにおける意味制御の改善をもたらす。
提案手法の既存手法と代替手法との比較により,提案手法の改善を確認した。
関連論文リスト
- NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D形状生成は、特定の条件や制約に固執する革新的な3Dコンテンツを作成することを目的としている。
既存の方法は、しばしば3Dの形状を局所化されたコンポーネントの列に分解し、各要素を分離して扱う。
本研究では2次元平面表現を利用した空間認識型3次元形状生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-27T04:09:34Z) - CNS-Edit: 3D Shape Editing via Coupled Neural Shape Optimization [56.47175002368553]
本稿では、3次元形状編集を潜在空間で暗黙的に行うために,結合表現とニューラルボリューム最適化に基づく新しい手法を提案する。
まず,3次元形状編集を支援する結合型ニューラル形状表現を設計する。
第二に、結合したニューラルネットワークの形状最適化手順を定式化し、編集操作対象の2つの結合した成分を協調最適化する。
論文 参考訳(メタデータ) (2024-02-04T01:52:56Z) - Controllable GAN Synthesis Using Non-Rigid Structure-from-Motion [1.7205106391379026]
本研究では,NRSfM(non-rigid structure-from-motion)と深部生成モデルを組み合わせた手法を提案する。
本稿では,3次元形状の変化に対応する2次元GANの潜在空間における軌跡の発見に有効なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-14T08:37:55Z) - ANISE: Assembly-based Neural Implicit Surface rEconstruction [12.745433575962842]
本稿では,部分的な観測から3次元形状を再構成するANISEについて述べる。
形状は神経暗黙の関数の集合として定式化され、それぞれが異なる部分のインスタンスを表す。
本研究では,部品表現を暗黙の関数に復号化して再構成を行う場合,画像とスパース点の雲から最先端の部品認識再構成結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-27T00:01:40Z) - Neural Convolutional Surfaces [59.172308741945336]
この研究は、大域的、粗い構造から、微細で局所的で、おそらく繰り返される幾何学を歪める形状の表現に関係している。
このアプローチは, 最先端技術よりも優れたニューラル形状圧縮を実現するとともに, 形状詳細の操作と伝達を可能にする。
論文 参考訳(メタデータ) (2022-04-05T15:40:11Z) - 3D Unsupervised Region-Aware Registration Transformer [13.137287695912633]
ディープニューラルネットワークによるロバストポイントクラウド登録モデルを学習することが、強力なパラダイムとして浮上した。
自己教師型3次元形状再構成損失を伴って入力形状を異なる領域に分割できる3次元領域分割モジュールの設計を提案する。
実験により,我々の3D-URRTは,様々なベンチマークデータセットよりも優れた登録性能が得られることが示された。
論文 参考訳(メタデータ) (2021-10-07T15:06:52Z) - SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation [50.53931728235875]
点雲の形で3次元形状を直接合成するための新しい教師なし球誘導生成モデルSP-GANを提案する。
既存のモデルと比較して、SP-GANは多種多様な高品質な形状を詳細に合成することができる。
論文 参考訳(メタデータ) (2021-08-10T06:49:45Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
DSG-Netは3次元形状の非交叉構造と幾何学的メッシュ表現を学習するディープニューラルネットワークである。
これは、幾何(構造)を不変に保ちながら構造(幾何学)のような不整合制御を持つ新しい形状生成アプリケーションの範囲をサポートする。
本手法は,制御可能な生成アプリケーションだけでなく,高品質な合成形状を生成できる。
論文 参考訳(メタデータ) (2020-08-12T17:06:51Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
ラプラシアンスペクトルから形状を復元する最初の学習法を提案する。
自動エンコーダが与えられた場合、我々のモデルはサイクル整合モジュールの形で潜在ベクトルを固有値列にマッピングする。
我々のデータ駆動型アプローチは、計算コストのごく一部でより正確な結果を提供しながら、事前の手法で必要となるアドホック正規化器の必要性を置き換える。
論文 参考訳(メタデータ) (2020-03-14T00:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。