論文の概要: Non-ground Abductive Logic Programming with Probabilistic Integrity
Constraints
- arxiv url: http://arxiv.org/abs/2108.03033v1
- Date: Fri, 6 Aug 2021 10:22:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-09 19:56:23.989034
- Title: Non-ground Abductive Logic Programming with Probabilistic Integrity
Constraints
- Title(参考訳): 確率的完全性制約を持つ非基底帰納論理プログラミング
- Authors: Elena Bellodi, Marco Gavanelli, Riccardo Zese, Evelina Lamma, Fabrizio
Riguzzi
- Abstract要約: 本稿では,変数の確率的推論に対処する,よりリッチな論理言語について考察する。
まず, 分配セマンティックスに基づいて, 全体としての帰納的言語とその意味を提示する。
次に,前述したものを拡張して得られた証明手順を導入し,その健全性と完全性を証明する。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertain information is being taken into account in an increasing number of
application fields. In the meantime, abduction has been proved a powerful tool
for handling hypothetical reasoning and incomplete knowledge. Probabilistic
logical models are a suitable framework to handle uncertain information, and in
the last decade many probabilistic logical languages have been proposed, as
well as inference and learning systems for them. In the realm of Abductive
Logic Programming (ALP), a variety of proof procedures have been defined as
well. In this paper, we consider a richer logic language, coping with
probabilistic abduction with variables. In particular, we consider an ALP
program enriched with integrity constraints `a la IFF, possibly annotated with
a probability value. We first present the overall abductive language, and its
semantics according to the Distribution Semantics. We then introduce a proof
procedure, obtained by extending one previously presented, and prove its
soundness and completeness.
- Abstract(参考訳): アプリケーションフィールドの数が増えるにつれて、不確実な情報が考慮されている。
一方、誘拐は仮説的推論と不完全知識を扱う強力なツールであることが証明されている。
確率論的論理モデルは不確実な情報を扱うのに適したフレームワークであり、過去10年間に多くの確率論的論理言語が提案されてきた。
帰納論理プログラミング(ALP)の領域では、様々な証明手順が定義されている。
本稿では,変数の確率的推論に対処し,よりリッチな論理言語を考える。
特に、整合性制約「a la IFF」に富んだALPプログラムを、確率値でアノテートしたものと考える。
まず,全帰納的言語とその意味論を分布意味論に基づいて提示する。
次に,前述したものを拡張して得られた証明手順を導入し,その健全性と完全性を証明する。
関連論文リスト
- Log Probabilities Are a Reliable Estimate of Semantic Plausibility in Base and Instruction-Tuned Language Models [50.15455336684986]
意味的妥当性を評価するため,LogProbsの有効性と基本的なプロンプトを評価した。
LogProbsは、直接ゼロショットプロンプトよりも、より信頼性の高いセマンティックな妥当性を提供する。
我々は,プロンプトベースの評価の時代においても,LogProbsは意味的妥当性の有用な指標である,と結論付けた。
論文 参考訳(メタデータ) (2024-03-21T22:08:44Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - dPASP: A Comprehensive Differentiable Probabilistic Answer Set
Programming Environment For Neurosymbolic Learning and Reasoning [0.0]
本稿では,ニューロシンボリック推論のための新しい宣言型論理プログラミングフレームワークdPASPを提案する。
非決定論的・矛盾的・不完全・統計的知識を表現できる確率論的論理プログラムのセマンティクスについて論じる。
次に、いくつかのサンプルプログラムとともに、言語での推論と学習をサポートする実装されたパッケージについて説明する。
論文 参考訳(メタデータ) (2023-08-05T19:36:58Z) - "What if?" in Probabilistic Logic Programming [2.9005223064604078]
ProbLogプログラムは、特定の確率でのみ保持される事実を持つ論理プログラムである。
クエリに答えることによって、このProbLog言語を拡張します。
論文 参考訳(メタデータ) (2023-05-24T16:35:24Z) - smProbLog: Stable Model Semantics in ProbLog for Probabilistic
Argumentation [19.46250467634934]
本稿では,確率論的論理プログラミング(PLP)のセマンティクスにおいて,確率論的議論フレームワークを表すプログラムが共通の仮定を満たさないことを示す。
第二の貢献は、確率的事実の選択が論理的原子の真理割り当てを一意に決定しないプログラムのための新しいPLP意味論である。
3つ目のコントリビューションは、このセマンティクスをサポートするPLPシステムの実装である。
論文 参考訳(メタデータ) (2023-04-03T10:59:25Z) - Probabilistic unifying relations for modelling epistemic and aleatoric uncertainty: semantics and automated reasoning with theorem proving [0.3441021278275805]
確率的プログラミングは、一般的なコンピュータプログラミング、統計的推論、形式的意味論を組み合わせたものである。
ProbURelは、Hehnerの予測確率的プログラミングに基づいているが、彼の作品が広く採用されるにはいくつかの障害がある。
コントリビューションには、Unified Theories of Programming(UTP)を使用した関係の形式化や、ブラケット外の確率などが含まれています。
ロボットのローカライゼーションの問題,機械学習の分類,確率ループの終了など,6つの事例で研究成果を実演する。
論文 参考訳(メタデータ) (2023-03-16T23:36:57Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP 空間は表現的微分可能および確率的プログラミング言語についての推論のための空間である。
我々の意味論は、最も実践的な確率的で微分可能なプログラムに意味を割り当てるのに十分である。
確率プログラムのトレース密度関数のほぼすべての微分可能性を確立する。
論文 参考訳(メタデータ) (2023-02-21T12:50:05Z) - Machine Learning with Probabilistic Law Discovery: A Concise
Introduction [77.34726150561087]
Probabilistic Law Discovery (PLD) は、確率論的ルール学習の変種を実装した論理ベースの機械学習手法である。
PLDはDecision Tree/Random Forestメソッドに近いが、関連するルールの定義方法に大きく異なる。
本稿はPLDの主な原則を概説し、その利点と限界を強調し、いくつかのアプリケーションガイドラインを提供する。
論文 参考訳(メタデータ) (2022-12-22T17:40:13Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。