論文の概要: "What if?" in Probabilistic Logic Programming
- arxiv url: http://arxiv.org/abs/2305.15318v1
- Date: Wed, 24 May 2023 16:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 14:21:30.374960
- Title: "What if?" in Probabilistic Logic Programming
- Title(参考訳): 確率論理プログラミングにおける「もし」
- Authors: Rafael Kiesel, Kilian R\"uckschlo{\ss} and Felix Weitk\"amper
- Abstract要約: ProbLogプログラムは、特定の確率でのみ保持される事実を持つ論理プログラムである。
クエリに答えることによって、このProbLog言語を拡張します。
- 参考スコア(独自算出の注目度): 2.9005223064604078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A ProbLog program is a logic program with facts that only hold with a
specified probability. In this contribution we extend this ProbLog language by
the ability to answer "What if" queries. Intuitively, a ProbLog program defines
a distribution by solving a system of equations in terms of mutually
independent predefined Boolean random variables. In the theory of causality,
Judea Pearl proposes a counterfactual reasoning for such systems of equations.
Based on Pearl's calculus, we provide a procedure for processing these
counterfactual queries on ProbLog programs, together with a proof of
correctness and a full implementation. Using the latter, we provide insights
into the influence of different parameters on the scalability of inference.
Finally, we also show that our approach is consistent with CP-logic, i.e. with
the causal semantics for logic programs with annotated with disjunctions.
- Abstract(参考訳): ProbLogプログラムは、特定の確率でのみ保持される事実を持つ論理プログラムである。
このコントリビューションでは、"What if"クエリに答える機能によって、このProbLog言語を拡張します。
直感的には、problogプログラムは、相互に独立なブール確率変数を用いて方程式系を解いて分布を定義する。
因果性理論において、ジューデア・パールはそのような方程式系に対する反事実推論を提案する。
パールの計算に基づいて,problogプログラム上でこれらの反事実クエリを,正しさの証明と実装の完全な実装とともに処理する手順を提案する。
後者を用いて、推論のスケーラビリティに対する異なるパラメータの影響についての洞察を提供する。
最後に,提案手法がcp-logic,すなわち論理プログラムの因果意味論と一致することを示す。
関連論文リスト
- Understanding ProbLog as Probabilistic Argumentation [0.0]
ProbLogは、ABA(Access-Based Argumentation)に基づく確率的抽象論(PAA)の一形態の例であることを示す。
接続は、代替のセマンティクスでProbLogを装備する道を開く。
論文 参考訳(メタデータ) (2023-08-30T09:05:32Z) - "Would life be more interesting if I were in AI?" Answering
Counterfactuals based on Probabilistic Inductive Logic Programming [0.0]
本稿では,因果的クエリを許容する因果的フレームワークを用いて確率論的論理プログラムについて検討する。
観測データからプログラム構造を学習することは、統計検査に依存する探索によって行われるのが普通である。
本稿では,プログラムの帰納分布からプログラムを再構築する言語フラグメントを提案する。
論文 参考訳(メタデータ) (2023-08-30T09:03:45Z) - smProbLog: Stable Model Semantics in ProbLog for Probabilistic
Argumentation [19.46250467634934]
本稿では,確率論的論理プログラミング(PLP)のセマンティクスにおいて,確率論的議論フレームワークを表すプログラムが共通の仮定を満たさないことを示す。
第二の貢献は、確率的事実の選択が論理的原子の真理割り当てを一意に決定しないプログラムのための新しいPLP意味論である。
3つ目のコントリビューションは、このセマンティクスをサポートするPLPシステムの実装である。
論文 参考訳(メタデータ) (2023-04-03T10:59:25Z) - $\omega$PAP Spaces: Reasoning Denotationally About Higher-Order,
Recursive Probabilistic and Differentiable Programs [64.25762042361839]
$omega$PAP 空間は表現的微分可能および確率的プログラミング言語についての推論のための空間である。
我々の意味論は、最も実践的な確率的で微分可能なプログラムに意味を割り当てるのに十分である。
確率プログラムのトレース密度関数のほぼすべての微分可能性を確立する。
論文 参考訳(メタデータ) (2023-02-21T12:50:05Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
ほとんどの人造システム、特にコンピュータは決定論的に機能する。
本稿では、量子物理学が確率法則に従うときの直観的なアプローチである量子情報理論による接続を提供する。
論文 参考訳(メタデータ) (2022-09-08T17:55:30Z) - SMProbLog: Stable Model Semantics in ProbLog and its Applications in
Argumentation [17.71804768917815]
SMProbLogは確率論理プログラミング言語ProbLogの一般化である。
本稿では,SMProbLogを用いて確率論的議論問題を解き明かす方法について述べる。
論文 参考訳(メタデータ) (2021-10-05T12:29:22Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - The Logic of Quantum Programs [77.34726150561087]
本稿では,量子プログラムにおける情報フローの論理計算について述べる。
特に、複素量子系における量子測定、ユニタリ進化、絡み合いを扱うことができる動的論理を導入する。
論文 参考訳(メタデータ) (2021-09-14T16:08:37Z) - Non-ground Abductive Logic Programming with Probabilistic Integrity
Constraints [2.624902795082451]
本稿では,変数の確率的推論に対処する,よりリッチな論理言語について考察する。
まず, 分配セマンティックスに基づいて, 全体としての帰納的言語とその意味を提示する。
次に,前述したものを拡張して得られた証明手順を導入し,その健全性と完全性を証明する。
論文 参考訳(メタデータ) (2021-08-06T10:22:12Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
イベント認識(CER)システムは、事前に定義されたイベントパターンを使用して、ストリーミングタイムスタンプデータセットで発生を検出する。
本稿では,複雑なイベントパターンによる確率論的推論を,イベント計算で重み付けされたルールの形で行うことができるAnswer Set Programming(ASP)に基づくシステムを提案する。
その結果, 効率と予測の両面で, 新たなアプローチの優位性が示された。
論文 参考訳(メタデータ) (2021-03-31T23:16:29Z) - Tractable Inference in Credal Sentential Decision Diagrams [116.6516175350871]
確率感性決定図は、解離ゲートの入力が確率値によってアノテートされる論理回路である。
我々は、局所確率を質量関数のクレーダル集合に置き換えることができる確率の一般化である、クレーダル感性決定図を開発する。
まず,ノイズの多い7セグメント表示画像に基づく簡単なアプリケーションについて検討する。
論文 参考訳(メタデータ) (2020-08-19T16:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。