論文の概要: Logical Neural Networks
- arxiv url: http://arxiv.org/abs/2006.13155v1
- Date: Tue, 23 Jun 2020 16:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 22:24:26.980417
- Title: Logical Neural Networks
- Title(参考訳): 論理ニューラルネットワーク
- Authors: Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo
Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco
Barahona, Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit Neelam, Ankita
Likhyani, Santosh Srivastava
- Abstract要約: ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
- 参考スコア(独自算出の注目度): 51.46602187496816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel framework seamlessly providing key properties of both
neural nets (learning) and symbolic logic (knowledge and reasoning). Every
neuron has a meaning as a component of a formula in a weighted real-valued
logic, yielding a highly intepretable disentangled representation. Inference is
omnidirectional rather than focused on predefined target variables, and
corresponds to logical reasoning, including classical first-order logic theorem
proving as a special case. The model is end-to-end differentiable, and learning
minimizes a novel loss function capturing logical contradiction, yielding
resilience to inconsistent knowledge. It also enables the open-world assumption
by maintaining bounds on truth values which can have probabilistic semantics,
yielding resilience to incomplete knowledge.
- Abstract(参考訳): ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付き実数値論理の式の構成として意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前定義された対象変数ではなく一方向であり、古典的な一階述語論理定理を含む論理的推論に対応する。
モデルはエンドツーエンドで微分可能であり、学習は論理的矛盾を捉えた新しい損失関数を最小化し、一貫性のない知識にレジリエンスをもたらす。
また、確率論的意味を持つ真理値の境界を維持し、不完全知識に弾力性を与えることによって、オープンワールドの仮定を可能にする。
関連論文リスト
- Inference of Abstraction for a Unified Account of Reasoning and Learning [0.0]
我々は、推論と学習の統一的な説明のために、単純な確率的推論の理論を与える。
我々は、形式論理におけるその満足度の観点から、データがどのように象徴的な知識を引き起こすかをモデル化する。
論文 参考訳(メタデータ) (2024-02-14T09:43:35Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Simple Generative Model of Logical Reasoning and Statistical Learning [0.6853165736531939]
統計的学習と論理的推論は、AIの2つの主要な分野であり、人間のようなマシンインテリジェンスに統一されることが期待されている。
本稿では、論理的推論と統計的学習の単純なベイズモデルを提案する。
我々は、形式論理におけるその満足度の観点から、データがどのように象徴的知識を引き起こすかをモデル化する。
論文 参考訳(メタデータ) (2023-05-18T16:34:51Z) - An elementary belief function logic [6.091096843566857]
可能性と必要性の尺度、信念と妥当性の関数と不正確な確率の双対性は、モーダル論理と共通の特徴を共有している。
本稿では,MEL上にLukasiewicz論理を追加することにより,より単純な信念関数論理を考案できることを示す。
論文 参考訳(メタデータ) (2023-03-23T10:39:18Z) - PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning [2.236663830879273]
論理ネットワーク(英: Logic Networks, LTN)は、ディープニューラルネットワークに根ざした微分可能な一階述語論理に基づくニューロシンボリックシステムである。
ここでは、ほとんどの意味的画像解釈タスクをエンコードする基本となるsubsumptionまたはtextttisOfClass述語に焦点を当てる。
本稿では,オブジェクト埋め込みと対応するクラスプロトタイプ間の距離の関数を真理レベルとする,共通のtextttisOfClass述語を提案する。
論文 参考訳(メタデータ) (2022-06-26T18:34:07Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - Logical Credal Networks [87.25387518070411]
本稿では,論理と確率を組み合わせた先行モデルの多くを一般化した表現的確率論的論理である論理的クレダルネットワークを紹介する。
本稿では,不確実性のあるマスターミンドゲームを解くこと,クレジットカード詐欺を検出することを含む,最大後部推論タスクの性能について検討する。
論文 参考訳(メタデータ) (2021-09-25T00:00:47Z) - Neural Logic Reasoning [47.622957656745356]
本稿では,ディープラーニングと論理推論の能力を統合するために,論理統合ニューラルネットワーク(LINN)を提案する。
LINNは、神経モジュールとしてAND、OR、NOTなどの基本的な論理操作を学び、推論のためにネットワークを通して命題論理推論を行う。
実験の結果、LINNはTop-Kレコメンデーションにおいて最先端のレコメンデーションモデルを大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2020-08-20T14:53:23Z) - Foundations of Reasoning with Uncertainty via Real-valued Logics [70.43924776071616]
我々は、本質的にすべての実数値論理をカバーするためにパラメータ化できる、音と強完全公理化を与える。
文のクラスは非常に豊かであり、各クラスは実数値論理の式の集合に対して可能な実値の集合を記述する。
論文 参考訳(メタデータ) (2020-08-06T02:13:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。