Observing two-photon subwavelength interference of broadband chaotic
light in polarization-selective Michelson interferometer
- URL: http://arxiv.org/abs/2108.03071v1
- Date: Fri, 6 Aug 2021 12:08:17 GMT
- Title: Observing two-photon subwavelength interference of broadband chaotic
light in polarization-selective Michelson interferometer
- Authors: Sheng Luo, Yu Zhou, Huaibin Zheng, Wanting Xu, Jianbin Liu, Hui Chen,
Yuchen He, Shuanghao Zhang, Fuli Li, Zhuo Xu
- Abstract summary: We have demonstrated the two-photon subwavelength interference effect of broadband chaotic light in a polarization-selective Michelson interferometer.
These experimental results may help to develop future optical interferometry, optical polarimetry, and subwavelength lithography.
- Score: 10.586210279233686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differing from the traditional method of achieving subwavelength
interference, we have demonstrated the two-photon subwavelength interference
effect of broadband chaotic light in a polarization-selective Michelson
interferometer with an ultrafast two-photon absorption detector the first time,
which is achieved by manipulating two-photon probability amplitudes involved in
the interference. In theory, the two-photon polarization coherence matrix and
probability amplitudes matrix are combined to develop polarized two-photon
interference terms, which explains the experimental results well. In order to
make better use of this interferometer to produce the subwavelength effect, we
also make a series of error analyses to find out the relationship between the
visibility and the degree of polarization error. Our experimental and
theoretical results are helpful to understand the two-photon subwavelength
interference, which sheds light on the development of the two-photon
interference theory of vector light field based on quantum mechanics. These
experimental results may help to develop future optical interferometry, optical
polarimetry, and subwavelength lithography.
Related papers
- Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Quantum Optical Induced-Coherence Tomography by a Hybrid Interferometer [5.3053404447552275]
This work demonstrates for the first time a hybrid-type induced-coherence interferometer that incorporates a Mach-Zehnder-type interferometer for visible photons and a Michelson-type interferometer for infrared photons.
The results verify that the induced-coherence interference visibility is approximately the same as the heralding efficiencies between twin photons along the relevant spatial modes.
arXiv Detail & Related papers (2023-09-13T07:54:31Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Sub-{\mu}m axial precision depth imaging with entangled two-colour
Hong-Ou-Mandel microscopy [0.0]
Two-colour interferometry used to evaluate variation in thickness of a semi-transparent sample in combination with entanglement scanning.
Sub-$mu m$ precision is reported using up to $12.3nm$ of detuning and $sim104$ detected photon pairs.
arXiv Detail & Related papers (2022-12-06T14:07:44Z) - Single Photon Scattering Can Account for the Discrepancies Between
Entangled Two-Photon Measurement Techniques [0.0]
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption.
Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section.
A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state.
arXiv Detail & Related papers (2022-02-23T20:14:11Z) - Theoretical analysis of a Polarized Two-Photon Michelson Interferometer
with Broadband Chaotic Light [0.061322748107472326]
We study two-photon interference of broadband chaotic light in a Michelson interferometer with two-photon-absorption detector.
The polarization is another dimension, as well as time and space, to tune the interference pattern in the two-photon interference process.
arXiv Detail & Related papers (2021-08-22T13:26:54Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Wave-particle duality using the Compton effect [0.0]
We study the consequences of the beam-splitter recoil, during the passage of the photon, over the interference pattern produced by the device.
Fortuitously, the model used to describe the interaction between the idealized beam-splitter and the photon clearly indicates that an interferometer based on Compton's effect could be build to study wave-particle duality.
arXiv Detail & Related papers (2020-05-06T16:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.