Theoretical analysis of a Polarized Two-Photon Michelson Interferometer
with Broadband Chaotic Light
- URL: http://arxiv.org/abs/2108.09719v2
- Date: Tue, 31 Aug 2021 03:50:22 GMT
- Title: Theoretical analysis of a Polarized Two-Photon Michelson Interferometer
with Broadband Chaotic Light
- Authors: Y. Zhou, S. Luo, J. Liu, H. Zheng, H. Chen, Y. He, Y. Liu, F. Li and
Z. Xu
- Abstract summary: We study two-photon interference of broadband chaotic light in a Michelson interferometer with two-photon-absorption detector.
The polarization is another dimension, as well as time and space, to tune the interference pattern in the two-photon interference process.
- Score: 0.061322748107472326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study two-photon interference of broadband chaotic light in
a Michelson interferometer with two-photon-absorption detector. The theoretical
analysis is based on two-photon interference and Feynman path integral theory.
The two-photon coherence matrix is introduced to calculate the second-order
interference pattern with polarizations being taken into account. Our study
shows that the polarization is another dimension, as well as time and space, to
tune the interference pattern in the two-photon interference process. It can
act as a switch to manipulate the interference process and open the gate to
many new experimental schemes.
Related papers
- Reducing of the Uncertainty Product of Coherent Light through Multi-Photon Interference [10.871383127225156]
By use of a Mach-Zehnder interferometer, we observe a fringe width reduction of the conventional interference pattern.
Our scheme does not require squeezed or entangled light to overcome the standard quantum limit.
arXiv Detail & Related papers (2024-03-30T23:28:07Z) - Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - Geometric Ramsey Interferometry with a Tripod Scheme [0.0]
Ramsey interferometry is a key technique for precision spectroscopy and to probe the coherence of quantum systems.
Here, we explore a different type of Ramsey interferometer where we perform quantum state manipulations by geometrical means.
This study opens the door for more robust interferometers operating on multiple input-output ports.
arXiv Detail & Related papers (2023-09-18T22:53:15Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Sub-{\mu}m axial precision depth imaging with entangled two-colour
Hong-Ou-Mandel microscopy [0.0]
Two-colour interferometry used to evaluate variation in thickness of a semi-transparent sample in combination with entanglement scanning.
Sub-$mu m$ precision is reported using up to $12.3nm$ of detuning and $sim104$ detected photon pairs.
arXiv Detail & Related papers (2022-12-06T14:07:44Z) - Observing two-photon subwavelength interference of broadband chaotic
light in polarization-selective Michelson interferometer [10.586210279233686]
We have demonstrated the two-photon subwavelength interference effect of broadband chaotic light in a polarization-selective Michelson interferometer.
These experimental results may help to develop future optical interferometry, optical polarimetry, and subwavelength lithography.
arXiv Detail & Related papers (2021-08-06T12:08:17Z) - Mirror-assisted backscattering interferometry to measure the first-order
correlation function of the light emitted by quantum scatterers [0.0]
We present a new method to obtain the first-order temporal correlation function, $g(1) (tau)$, of the light scattered by an assembly of point-like quantum scatterers.
This new method has direct application to obtain the saturated spectrum of quantum systems.
arXiv Detail & Related papers (2021-08-03T12:34:41Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.