論文の概要: Path classification by stochastic linear recurrent neural networks
- arxiv url: http://arxiv.org/abs/2108.03090v1
- Date: Fri, 6 Aug 2021 12:59:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-09 17:21:41.191128
- Title: Path classification by stochastic linear recurrent neural networks
- Title(参考訳): 確率線形リカレントニューラルネットワークによる経路分類
- Authors: Wiebke Bartolomaeus, Youness Boutaib, Sandra Nestler, Holger Rauhut
- Abstract要約: トレーニングや分類作業に利用されるユニークな情報として,RNNが供給される経路の部分的なシグネチャを保持することを示す。
これらのRNNは訓練が容易で堅牢であり、これらの観測を合成データと実データの両方で数値実験で裏付けるものである、と我々は主張する。
- 参考スコア(独自算出の注目度): 2.5499055723658097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the functioning of a classifying biological neural network
from the perspective of statistical learning theory, modelled, in a simplified
setting, as a continuous-time stochastic recurrent neural network (RNN) with
identity activation function. In the purely stochastic (robust) regime, we give
a generalisation error bound that holds with high probability, thus showing
that the empirical risk minimiser is the best-in-class hypothesis. We show that
RNNs retain a partial signature of the paths they are fed as the unique
information exploited for training and classification tasks. We argue that
these RNNs are easy to train and robust and back these observations with
numerical experiments on both synthetic and real data. We also exhibit a
trade-off phenomenon between accuracy and robustness.
- Abstract(参考訳): 本稿では, 統計学習理論をモデルとした生体ニューラルネットワークを, 識別活性化機能付き連続時間確率的リカレントニューラルネットワーク (RNN) として, 簡易な設定で機能する方法について検討する。
純粋に確率的(ロバスト)な理論では、高い確率を持つ一般化誤差境界を与え、経験的リスク最小化がクラス内で最良の仮説であることを示す。
トレーニングや分類作業に利用されるユニークな情報として,RNNが供給される経路の部分的なシグネチャを保持することを示す。
これらのRNNは訓練が容易で堅牢であり、これらの観測を合成データと実データの両方で数値実験で裏付ける。
また、精度と堅牢性のトレードオフ現象も示しています。
関連論文リスト
- Inferring stochastic low-rank recurrent neural networks from neural data [5.179844449042386]
計算神経科学における中心的な目的は、大きなニューロンの活動と基礎となる力学系を関連付けることである。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことによって、そのような解釈可能性を示す。
そこで本研究では,低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T15:57:49Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - A simple normative network approximates local non-Hebbian learning in
the cortex [12.940770779756482]
神経科学実験は、皮質ニューロンによる感覚入力の処理は、指示信号によって変調されることを示した。
ここでは、規範的なアプローチを採用し、フィードフォワードデータの投影を導く監督的な入力として、これらの命令信号をモデル化する。
オンラインアルゴリズムは、シナプス学習規則が大脳皮質で観察されるカルシウムプラトー電位依存的な可塑性に類似しているニューラルネットワークによって実装することができる。
論文 参考訳(メタデータ) (2020-10-23T20:49:44Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
ニューラルネットワークのトレーニングプロセス中に隠れた重みに、特定の小さな密度の混合物が蓄積されることが、敵の例の存在の原因の1つであることを示す。
この原理を説明するために、CIFAR-10データセットの両実験と、ある自然な分類タスクに対して、ランダムな勾配勾配勾配を用いた2層ニューラルネットワークをトレーニングすることを証明する理論的結果を示す。
論文 参考訳(メタデータ) (2020-05-20T16:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。