論文の概要: Approximating Optimal Asset Allocations using Simulated Bifurcation
- arxiv url: http://arxiv.org/abs/2108.03092v3
- Date: Fri, 3 Dec 2021 03:49:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-19 05:14:09.720643
- Title: Approximating Optimal Asset Allocations using Simulated Bifurcation
- Title(参考訳): 模擬分岐を用いた最適アセット割当の近似
- Authors: Thomas Bouquet, Mehdi Hmyene, Fran\c{c}ois Porcher, Lorenzo Pugliese,
Jad Zeroual
- Abstract要約: 本稿では、最適資産配分を近似するためのシミュレート・バイファーケーションアルゴリズムの適用について検討する。
S&P500インデックスに属する441の資産に適用された、メソッドの基礎となる物理原則と、後者のPython実装について、読者に説明を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates the application of Simulated Bifurcation algorithms
to approximate optimal asset allocations. It will provide the reader with an
explanation of the physical principles underlying the method and a Python
implementation of the latter applied to 441 assets belonging to the S&P500
index. In addition, the paper tackles the problem of the selection of an
optimal sub-allocation; in this particular case, we find an adequate solution
in an unrivaled timescale.
- Abstract(参考訳): 本稿では、最適資産配分の近似にシミュレートされた分岐アルゴリズムを適用する。
S&P500インデックスに属する441の資産に適用された、メソッドの基礎となる物理原則と、後者のPython実装について、読者に説明を提供する。
また,本論文では,最適サブアロケーションの選択の問題に対処し,この場合,未解決の時間スケールで適切な解を求める。
関連論文リスト
- DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems [0.755972004983746]
簡単な統計量を用いて最適化アルゴリズムの軌道を記述する特徴抽出法を提案する。
提案するDynamoRep機能は,最適化アルゴリズムが動作している問題クラスを特定するのに十分な情報を取得する。
論文 参考訳(メタデータ) (2023-06-08T06:57:07Z) - Rollout Algorithms and Approximate Dynamic Programming for Bayesian
Optimization and Sequential Estimation [0.0]
逐次推定を含む様々な問題に適用可能な、統一された近似的動的プログラミングフレームワークを提供する。
まず,最適化を目的とした代理コスト関数の構築を検討し,ベイズ最適化の特別な場合に着目した。
次に、最適測定選択を用いた確率ベクトルの逐次推定のより一般的な場合とその適応制御問題への応用について述べる。
論文 参考訳(メタデータ) (2022-12-15T17:50:23Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
Needle-in-a-Haystack問題は、データセットのサイズに対して最適な条件が極端に不均衡であるときに発生する。
本稿では,従来のベイズ最適化原理に基づくズームメモリに基づく初期化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T23:57:41Z) - Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method [0.0]
本稿では,高い出力分散を有するシミュレータの多目的最適化に着目する。
我々はベイズ最適化アルゴリズムを用いて最適化すべき関数の予測を行う。
論文 参考訳(メタデータ) (2022-07-08T11:51:48Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - High dimensional Bayesian Optimization Algorithm for Complex System in
Time Series [1.9371782627708491]
本稿では,新しい高次元ベイズ最適化アルゴリズムを提案する。
モデルの時間依存特性や次元依存特性に基づいて,提案アルゴリズムは次元を均等に低減することができる。
最適解の最終精度を高めるために,提案アルゴリズムは,最終段階におけるアダムに基づく一連のステップに基づく局所探索を追加する。
論文 参考訳(メタデータ) (2021-08-04T21:21:17Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Tiering as a Stochastic Submodular Optimization Problem [5.659969270836789]
タイアリングは大規模情報検索システムを構築する上で欠かせない技術である。
最適化問題としての最適階層化は、部分モジュラーなknapsack制約を伴う部分モジュラー最小化問題として適用可能であることを示す。
論文 参考訳(メタデータ) (2020-05-16T07:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。