論文の概要: Continuous-variable optimization with neural network quantum states
- arxiv url: http://arxiv.org/abs/2108.03325v3
- Date: Thu, 6 Jan 2022 18:53:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-19 04:57:45.657485
- Title: Continuous-variable optimization with neural network quantum states
- Title(参考訳): ニューラルネットワーク量子状態を用いた連続変数最適化
- Authors: Yabin Zhang, David Gorsich, Paramsothy Jayakumar, Shravan Veerapaneni
- Abstract要約: 本研究では,連続的な最適化を行うための連続可変ニューラルネットワーク量子状態(CV-NQS)の有用性について検討する。
CV-NQSを用いた変分モンテカルロを用いた数値実験により,非局所的アルゴリズムは局所勾配探索法と競合する基底状態の探索に成功しているが,提案手法は好ましくないスケーリングに悩まされることを示した。
- 参考スコア(独自算出の注目度): 6.791920570692005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by proposals for continuous-variable quantum approximate
optimization (CV-QAOA), we investigate the utility of continuous-variable
neural network quantum states (CV-NQS) for performing continuous optimization,
focusing on the ground state optimization of the classical antiferromagnetic
rotor model. Numerical experiments conducted using variational Monte Carlo with
CV-NQS indicate that although the non-local algorithm succeeds in finding
ground states competitive with the local gradient search methods, the proposal
suffers from unfavorable scaling. A number of proposed extensions are put
forward which may help alleviate the scaling difficulty.
- Abstract(参考訳): 連続可変量子近似最適化(CV-QAOA)の提案に触発されて,古典的反強磁性ロータモデルの基底状態最適化に着目し,連続可変ニューラルネットワーク量子状態(CV-NQS)の連続最適化への応用について検討した。
CV-NQSを用いた変分モンテカルロを用いた数値実験により,非局所的アルゴリズムは局所勾配探索法と競合する基底状態の探索に成功しているが,提案手法は好ましくないスケーリングに悩まされることを示した。
スケーリングの難しさを軽減するために、いくつかの拡張が提案されている。
関連論文リスト
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
本研究では、この離散時間解が一般化形式を与えることを示すために、QNG力を持つランゲヴィン方程式を用いる。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - Improved Optimization for the Neural-network Quantum States and Tests on the Chromium Dimer [11.985673663540688]
ニューラルネットワーク量子状態(NQS)は、かなり高度な波動関数アンザッツ研究を持っている。
この研究は、NQSを用いたVMC最適化の計算要求を減らすために、3つのアルゴリズム拡張を導入する。
論文 参考訳(メタデータ) (2024-04-14T15:07:57Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Scalable Imaginary Time Evolution with Neural Network Quantum States [0.0]
ニューラルネットワーク量子状態(NQS)としての量子波関数の表現は、多体量子系の基底状態を見つけるための強力な変分アンサッツを提供する。
我々は、計量テンソルの計算をバイパスするアプローチを導入し、代わりにユークリッド計量を用いた一階降下にのみ依存する。
我々は,NQSのエネルギーが減少するまで最適な時間ステップを決定し,目標を固定し,適応的に安定させる。
論文 参考訳(メタデータ) (2023-07-28T12:26:43Z) - Neural network quantum state with proximal optimization: a ground-state
searching scheme based on variational Monte Carlo [4.772126473623257]
提案手法では, ミスマッチしたサンプルを再利用することで, 複数の更新を可能とした, 近位最適化(PO)を用いた新しい目的関数を提案する。
正方格子上の1次元横フィールドイジングモデルと2次元ハイゼンベルク反強磁性体を用いた基底状態探索のためのVMC-POアルゴリズムの性能について検討する。
論文 参考訳(メタデータ) (2022-10-29T04:55:39Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Avoiding barren plateaus via transferability of smooth solutions in
Hamiltonian Variational Ansatz [0.0]
変分量子アルゴリズム(VQA)は、現在の量子デバイス上で計算スピードアップを達成するための主要な候補である。
2つの大きなハードルは、低品質な局所最小値の増殖と、コスト関数のランドスケープにおける勾配の指数的な消失である。
ここでは、反復探索方式を用いることで、パラダイム的量子多体モデルの基底状態を効果的に作成できることを示す。
論文 参考訳(メタデータ) (2022-06-04T12:52:29Z) - Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to
Improve Generalization [89.7882166459412]
勾配雑音(SGN)は、ディープラーニングの暗黙の正規化として機能する。
深層学習を改善するためにランダムノイズを注入してSGNを人工的にシミュレートしようとした作品もある。
低計算コストでSGNをシミュレーションし、学習率やバッチサイズを変更することなく、PNM(Positive-Negative Momentum)アプローチを提案する。
論文 参考訳(メタデータ) (2021-03-31T16:08:06Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
勾配の通信は、コンピュータビジョンアプリケーションで複数のデバイスでディープニューラルネットワークをトレーニングするのに費用がかかる。
本研究は,textbfANY勾配分布に対する二値および多値勾配量子化の最適条件を導出する。
最適条件に基づいて, 偏差BinGradと非偏差ORQの2値勾配量子化と多値勾配量子化の2つの新しい量子化手法を開発した。
論文 参考訳(メタデータ) (2020-02-25T18:28:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。