Mixture of Linear Models Co-supervised by Deep Neural Networks
- URL: http://arxiv.org/abs/2108.04035v2
- Date: Mon, 07 Oct 2024 04:57:43 GMT
- Title: Mixture of Linear Models Co-supervised by Deep Neural Networks
- Authors: Beomseok Seo, Lin Lin, Jia Li,
- Abstract summary: We propose an approach to fill the gap between relatively simple explainable models and deep neural network (DNN) models.
Our main idea is a mixture of discriminative models that is trained with the guidance from a DNN.
- Score: 14.831346286039151
- License:
- Abstract: Deep neural network (DNN) models have achieved phenomenal success for applications in many domains, ranging from academic research in science and engineering to industry and business. The modeling power of DNN is believed to have come from the complexity and over-parameterization of the model, which on the other hand has been criticized for the lack of interpretation. Although certainly not true for every application, in some applications, especially in economics, social science, healthcare industry, and administrative decision making, scientists or practitioners are resistant to use predictions made by a black-box system for multiple reasons. One reason is that a major purpose of a study can be to make discoveries based upon the prediction function, e.g., to reveal the relationships between measurements. Another reason can be that the training dataset is not large enough to make researchers feel completely sure about a purely data-driven result. Being able to examine and interpret the prediction function will enable researchers to connect the result with existing knowledge or gain insights about new directions to explore. Although classic statistical models are much more explainable, their accuracy often falls considerably below DNN. In this paper, we propose an approach to fill the gap between relatively simple explainable models and DNN such that we can more flexibly tune the trade-off between interpretability and accuracy. Our main idea is a mixture of discriminative models that is trained with the guidance from a DNN. Although mixtures of discriminative models have been studied before, our way of generating the mixture is quite different.
Related papers
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Reliability and Interpretability in Science and Deep Learning [0.0]
This article focuses on the comparison between traditional scientific models and Deep Neural Network (DNN) models.
It argues that the high complexity of DNN models hinders the estimate of their reliability and also their prospect of long-term progress.
It also clarifies how interpretability is a precondition for assessing the reliability of any model, which cannot be based on statistical analysis alone.
arXiv Detail & Related papers (2024-01-14T20:14:07Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean [1.0923877073891446]
Deep neural networks (DNNs) have proven to be highly effective in a variety of tasks.
Despite this success, the inner workings of DNNs are often not transparent.
This lack of interpretability has led to increased research on inherently interpretable neural networks.
arXiv Detail & Related papers (2023-01-27T17:06:13Z) - Characterizing and Understanding the Behavior of Quantized Models for
Reliable Deployment [32.01355605506855]
Quantization-aware training can produce more stable models than standard, adversarial, and Mixup training.
Disagreements often have closer top-1 and top-2 output probabilities, and $Margin$ is a better indicator than the other uncertainty metrics to distinguish disagreements.
We opensource our code and models as a new benchmark for further studying the quantized models.
arXiv Detail & Related papers (2022-04-08T11:19:16Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Modeling the EdNet Dataset with Logistic Regression [0.0]
We describe our experience with competition from the perspective of educational data mining.
We discuss some basic results in the Kaggle system and our thoughts on how those results may have been improved.
arXiv Detail & Related papers (2021-05-17T20:30:36Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.