Object Detection in 3D Point Clouds via Local Correlation-Aware Point
Embedding
- URL: http://arxiv.org/abs/2301.04613v1
- Date: Wed, 11 Jan 2023 18:14:47 GMT
- Title: Object Detection in 3D Point Clouds via Local Correlation-Aware Point
Embedding
- Authors: Chengzhi Wu, Julius Pfrommer, J\"urgen Beyerer, Kangning Li and Boris
Neubert
- Abstract summary: We present an improved approach for 3D object detection in point cloud data based on the Frustum PointNet (F-PointNet)
Compared to the original F-PointNet, our newly proposed method considers the point neighborhood when computing point features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an improved approach for 3D object detection in point cloud data
based on the Frustum PointNet (F-PointNet). Compared to the original
F-PointNet, our newly proposed method considers the point neighborhood when
computing point features. The newly introduced local neighborhood embedding
operation mimics the convolutional operations in 2D neural networks. Thus
features of each point are not only computed with the features of its own or of
the whole point cloud but also computed especially with respect to the features
of its neighbors. Experiments show that our proposed method achieves better
performance than the F-Pointnet baseline on 3D object detection tasks.
Related papers
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - Mini-PointNetPlus: a local feature descriptor in deep learning model for
3d environment perception [7.304195370862869]
We propose a novel local feature descriptor, mini-PointNetPlus, as an alternative for plug-and-play to PointNet.
Our basic idea is to separately project the data points to the individual features considered, each leading to a permutation invariant.
Due to fully utilizing the features by the proposed descriptor, we demonstrate in experiment a considerable performance improvement for 3D perception.
arXiv Detail & Related papers (2023-07-25T07:30:28Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition [1.3999481573773074]
We propose Attention Based Decomposition Network (ABD-Net) for point cloud decomposition.
We show improved performance of 3D object classification using attention features based on primitive shapes in point clouds.
arXiv Detail & Related papers (2021-07-09T08:39:30Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
We present a simple yet effective method for directly detecting 3D objects from the 3D point cloud.
Our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers citevaswaniattention.
With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.
arXiv Detail & Related papers (2021-04-01T17:59:36Z) - ODFNet: Using orientation distribution functions to characterize 3D
point clouds [0.0]
We leverage on point orientation distributions around a point in order to obtain an expressive local neighborhood representation for point clouds.
New ODFNet model achieves state-of-the-art accuracy for object classification on ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2020-12-08T19:54:20Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.