論文の概要: Segmentation of VHR EO Images using Unsupervised Learning
- arxiv url: http://arxiv.org/abs/2108.04222v2
- Date: Tue, 10 Aug 2021 08:55:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-15 11:26:58.821139
- Title: Segmentation of VHR EO Images using Unsupervised Learning
- Title(参考訳): 教師なし学習を用いたVHR EO画像のセグメンテーション
- Authors: Sudipan Saha and Lichao Mou and Muhammad Shahzad and Xiao Xiang Zhu
- Abstract要約: 単一のラベルのないシーンでトレーニングできる教師なしセマンティックセマンティックセマンティクス手法を提案する。
提案手法は、この特性を利用して、より大きなシーンから小さなパッチをサンプリングする。
対象画像/シーンの教師なしトレーニングの後、モデルはシーンに存在する主要なクラスを自動的に分離し、セグメンテーションマップを生成する。
- 参考スコア(独自算出の注目度): 19.00071868539993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is a crucial step in many Earth observation tasks.
Large quantity of pixel-level annotation is required to train deep networks for
semantic segmentation. Earth observation techniques are applied to varieties of
applications and since classes vary widely depending on the applications,
therefore, domain knowledge is often required to label Earth observation
images, impeding availability of labeled training data in many Earth
observation applications. To tackle these challenges, in this paper we propose
an unsupervised semantic segmentation method that can be trained using just a
single unlabeled scene. Remote sensing scenes are generally large. The proposed
method exploits this property to sample smaller patches from the larger scene
and uses deep clustering and contrastive learning to refine the weights of a
lightweight deep model composed of a series of the convolution layers along
with an embedded channel attention. After unsupervised training on the target
image/scene, the model automatically segregates the major classes present in
the scene and produces the segmentation map. Experimental results on the
Vaihingen dataset demonstrate the efficacy of the proposed method.
- Abstract(参考訳): セマンティックセグメンテーションは多くの地球観測における重要なステップである。
セマンティックセグメンテーションのための深層ネットワークのトレーニングには大量のピクセルレベルのアノテーションが必要である。
地球観測技術は様々な用途に適用され、クラスは用途によって大きく異なるため、地球観測画像のラベル付けにはドメイン知識が必要とされることが多く、多くの地球観測アプリケーションでラベル付きトレーニングデータの利用が妨げられている。
これらの課題に対処するために,本研究では,単一の未ラベルシーンを用いてトレーニング可能な教師なしセマンティックセマンティックセマンティクス手法を提案する。
リモートセンシングのシーンは概して大きい。
提案手法では,この特性を利用して,より大きなシーンからより小さなパッチをサンプリングし,複数の畳み込み層からなる軽量深層モデルの重みと埋め込みチャネルの注意を洗練するために,深層クラスタリングとコントラスト学習を用いる。
対象画像/シーンの教師なしトレーニングの後、モデルはシーンに存在する主要なクラスを自動的に分離し、セグメンテーションマップを生成する。
vaihingenデータセットの実験結果は,提案手法の有効性を示している。
関連論文リスト
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
本総説は, 半教師付きセマンティックセグメンテーション分野における擬似ラベル手法に関する最新の研究成果について, 包括的かつ組織的に概観することを目的としている。
さらに,医用およびリモートセンシング画像のセグメンテーションにおける擬似ラベル技術の適用について検討する。
論文 参考訳(メタデータ) (2024-03-04T10:18:38Z) - Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation [18.598405597933752]
自己監督(Self-supervision)は、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
論文 参考訳(メタデータ) (2024-02-25T18:01:42Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
画像分解をグラフ分割問題として再フレーミングすることで,従来のスペクトル分割法から着想を得た。
これらの固有ベクトルはすでにイメージを意味のあるセグメントに分解しており、シーン内のオブジェクトのローカライズに容易に利用できる。
データセットにまたがるこれらのセグメントに関連する機能をクラスタ化することで、明確に定義された、名前付き可能なリージョンを得ることができる。
論文 参考訳(メタデータ) (2022-05-16T17:47:44Z) - Mars Terrain Segmentation with Less Labels [1.1745324895296465]
本研究では,火星の地形区分に関する半教師付き学習フレームワークを提案する。
コントラスト損失関数と出力アトラス畳み込みモジュールを使ってトレーニングされるバックボーンモジュールが組み込まれている。
提案したモデルは161のトレーニング画像のみを用いて91.1%のセグメンテーション精度を達成することができる。
論文 参考訳(メタデータ) (2022-02-01T22:25:15Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
InMARS(Information Maximization and Adrial Regularization)と呼ばれる新しい教師なしセマンティックセマンティックセマンティクス手法を提案する。
シーンを知覚群に解析する人間の知覚に触発され、提案手法はまず、入力画像を意味のある領域(スーパーピクセルとも呼ばれる)に分割する。
次に、相互情報最大化(Multual-Information-Maximization)と、それらの領域を意味論的に意味のあるクラスにクラスタ化するための敵対的トレーニング戦略を利用する。
提案手法は2つの非教師付きセマンティックセグメンテーションデータセット上での最先端性能を実現することを実証した。
論文 参考訳(メタデータ) (2021-07-01T18:36:27Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
ラベルなし画像列からの自己教師付き単眼深度推定により強化された半教師付きセマンティックセマンティックセマンティックセマンティクスのフレームワークを提案する。
提案されたモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2020-12-19T21:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。