Midgap state requirements for optically active quantum defects
- URL: http://arxiv.org/abs/2302.10767v1
- Date: Tue, 21 Feb 2023 16:07:04 GMT
- Title: Midgap state requirements for optically active quantum defects
- Authors: Yihuang Xiong, Milena Mathew, Sin\'ead M. Griffin, Alp Sipahigil,
Geoffroy Hautier
- Abstract summary: Optically active quantum defects play an important role in quantum sensing, computing, and communication.
It is commonly assumed that only quantum defects introducing levels well within the band gap and far from the band edges are of interest for quantum technologies.
We show that optically active defects with energy levels close to the band edges can display similar properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optically active quantum defects play an important role in quantum sensing,
computing, and communication. The electronic structure and the single-particle
energy levels of these quantum defects in the semiconducting host have been
used to understand their opto-electronic properties. Optical excitations that
are central for their initialization and readout are linked to transitions
between occupied and unoccupied single-particle states. It is commonly assumed
that only quantum defects introducing levels well within the band gap and far
from the band edges are of interest for quantum technologies as they mimic an
isolated atom embedded in the host. In this perspective, we contradict this
common assumption and show that optically active defects with energy levels
close to the band edges can display similar properties. We highlight quantum
defects that are excited through transitions to or from a band-like level
(bound exciton), such as the T center and Se$\rm _{Si}^+$ in silicon. We also
present how defects such as the silicon divacancy in diamond can involve
transitions between localized levels that are above the conduction band or
below the valence band. Loosening the commonly assumed requirement on the
electronic structure of quantum defects offers opportunities in quantum defects
design and discovery, especially in smaller band gap hosts such as silicon. We
discuss the challenges in terms of operating temperature for photoluminescence
or radiative lifetime in this regime. We also highlight how these alternative
type of defects bring their own needs in terms of theoretical developments and
fundamental understanding. This perspective clarifies the electronic structure
requirement for quantum defects and will facilitate the identification and
design of new color centers for quantum applications especially driven by first
principles computations.
Related papers
- Simulating optically-active spin defects with a quantum computer [3.3011710036065325]
We develop fault-tolerant quantum algorithms to simulate optically active defect states and their radiative emission rates.
We conclude by offering a forward-looking perspective on the potential of quantum computers to enhance quantum sensor capabilities.
arXiv Detail & Related papers (2024-05-21T18:00:02Z) - Quantum bit with telecom wave-length emission from a simple defect in Si [4.1020458874018795]
Controlled creation and erasure of simple carbon interstitial defects have been successfully realised in silicon.
This defect has a stable structure near room temperature and emits in the wave-length where the signal loss is minimal.
We propose that a carbon interstitial can act as a quantum bit and may realize a spin-to-photon interface in CMOS-compatible platforms.
arXiv Detail & Related papers (2024-04-25T20:46:54Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Comprehensive scheme for identifying defects in solid-state quantum
systems [0.0]
A solid-state quantum emitter is one of the indispensable components for optical quantum technologies.
We demonstrate the calculation of the complete optical fingerprints of quantum emitters in hexagonal boron nitride.
We apply this approach to predict the suitability for using the emitters in specific quantum applications.
arXiv Detail & Related papers (2023-05-29T05:28:27Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Detection of single W-centers in silicon [0.0]
Single intrinsic defects in silicon are linked to a tri-interstitial complex called W-center, with a zero-phonon line at 1.218$mu$m.
These results could set the stage for numerous quantum perspectives based on intrinsic luminescent defects in silicon.
arXiv Detail & Related papers (2021-08-09T18:19:13Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.