Class dependency based learning using Bi-LSTM coupled with the transfer
learning of VGG16 for the diagnosis of Tuberculosis from chest x-rays
- URL: http://arxiv.org/abs/2108.04329v1
- Date: Mon, 19 Jul 2021 15:13:46 GMT
- Title: Class dependency based learning using Bi-LSTM coupled with the transfer
learning of VGG16 for the diagnosis of Tuberculosis from chest x-rays
- Authors: G Jignesh Chowdary, Suganya G, Premalatha M, Karunamurthy K
- Abstract summary: This paper presents an automatic approach for the diagnosis of TB from posteroanterior chest x-rays.
The proposed model achieved accuracy and sensitivity of 97.76%, 97.01% and 96.42%, 94.11% on Schezien and Montgomery county datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tuberculosis is an infectious disease that is leading to the death of
millions of people across the world. The mortality rate of this disease is high
in patients suffering from immuno-compromised disorders. The early diagnosis of
this disease can save lives and can avoid further complications. But the
diagnosis of TB is a very complex task. The standard diagnostic tests still
rely on traditional procedures developed in the last century. These procedures
are slow and expensive. So this paper presents an automatic approach for the
diagnosis of TB from posteroanterior chest x-rays. This is a two-step approach,
where in the first step the lung regions are segmented from the chest x-rays
using the graph cut method, and then in the second step the transfer learning
of VGG16 combined with Bi-directional LSTM is used for extracting high-level
discriminative features from the segmented lung regions and then classification
is performed using a fully connected layer. The proposed model is evaluated
using data from two publicly available databases namely Montgomery Country set
and Schezien set. The proposed model achieved accuracy and sensitivity of
97.76%, 97.01% and 96.42%, 94.11% on Schezien and Montgomery county datasets.
This model enhanced the diagnostic accuracy of TB by 0.7% and 11.68% on
Schezien and Montgomery county datasets.
Related papers
- Empowering Tuberculosis Screening with Explainable Self-Supervised Deep Neural Networks [66.59360534642579]
Tuberculosis persists as a global health crisis, especially in resource-limited populations and remote regions.
In this work, we introduce an explainable self-supervised self-train learning network tailored for tuberculosis case screening.
The network achieves an outstanding overall accuracy of 98.14% and demonstrates high recall and precision rates of 95.72% and 99.44%, respectively.
arXiv Detail & Related papers (2024-06-19T18:10:06Z) - Early Detection of Tuberculosis with Machine Learning Cough Audio
Analysis: Towards More Accessible Global Triaging Usage [0.0]
Current gold standards for TB diagnosis are slow or inaccessible.
Current machine learning (ML) diagnosis research, like utilizing chest radiographs, is ineffective.
ensemble model was developed that analyzes, using a novel ML architecture, coughs' acoustic epidemiologies from smartphones.
Results are available within 15 seconds and can easily be accessible via a mobile app.
arXiv Detail & Related papers (2023-10-25T23:22:20Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Computer-aided Tuberculosis Diagnosis with Attribute Reasoning
Assistance [58.01014026139231]
We propose a new large-scale tuberculosis (TB) chest X-ray dataset (TBX-Att)
We establish an attribute-assisted weakly-supervised framework to classify and localize TB by leveraging the attribute information.
The proposed model is evaluated on the TBX-Att dataset and will serve as a solid baseline for future research.
arXiv Detail & Related papers (2022-07-01T07:50:35Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - Probabilistic combination of eigenlungs-based classifiers for COVID-19
diagnosis in chest CT images [6.1020196190084555]
More than 100 million confirmed cases of COVID-19, including more than 2.4 million deaths.
The use of medical imaging such as chest X-ray (CXR) and chest Computed Tomography (CCT) have proved to be an excellent solution.
We propose an ensemble classifier based on probabilistic Support Vector Machine (SVM) in order to identify pneumonia patterns.
arXiv Detail & Related papers (2021-03-04T11:30:38Z) - Deep Learning Methods for Screening Pulmonary Tuberculosis Using Chest
X-rays [0.974672460306765]
The presented deep learning pipeline consists of three different state of the art deep learning architectures, to generate, segment and classify lung X-rays.
We were able to achieve classification accuracy of 97.1% (Youden's index-0.941,sensitivity of 97.9% and specificity of 96.2%) which is a considerable improvement compared to the existing work in the literature.
arXiv Detail & Related papers (2020-12-25T14:21:35Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.