Label-informed Graph Structure Learning for Node Classification
- URL: http://arxiv.org/abs/2108.04595v1
- Date: Tue, 10 Aug 2021 11:14:09 GMT
- Title: Label-informed Graph Structure Learning for Node Classification
- Authors: Liping Wang, Fenyu Hu, Shu Wu, Liang Wang
- Abstract summary: We propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix.
We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.
- Score: 16.695269600529056
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved great success among various
domains. Nevertheless, most GNN methods are sensitive to the quality of graph
structures. To tackle this problem, some studies exploit different graph
structure learning strategies to refine the original graph structure. However,
these methods only consider feature information while ignoring available label
information. In this paper, we propose a novel label-informed graph structure
learning framework which incorporates label information explicitly through a
class transition matrix. We conduct extensive experiments on seven node
classification benchmark datasets and the results show that our method
outperforms or matches the state-of-the-art baselines.
Related papers
- Knowledge Probing for Graph Representation Learning [12.960185655357495]
We propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning.
Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives.
We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification.
arXiv Detail & Related papers (2024-08-07T16:27:45Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Multi-view graph structure learning using subspace merging on Grassmann
manifold [4.039245878626346]
We introduce a new graph structure learning approach using multi-view learning, named MV-GSL (Multi-View Graph Structure Learning)
We aggregate different graph structure learning methods using subspace merging on Grassmann manifold to improve the quality of the learned graph structures.
Our experiments show that the proposed method has promising performance compared to single and other combined graph structure learning methods.
arXiv Detail & Related papers (2022-04-11T17:01:05Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
This work explores the potential of metric-based meta-learning for solving few-shot graph classification.
An implementation upon GIN, named SMFGIN, is tested on two datasets, Chembl and TRIANGLES.
arXiv Detail & Related papers (2021-03-05T09:03:03Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
We develop the textbfGraphCrop (Subgraph Cropping) data augmentation method to simulate the real-world noise of sub-structure omission.
By preserving the valid structure contexts for graph classification, we encourage GNNs to understand the content of graph structures in a global sense.
arXiv Detail & Related papers (2020-09-22T14:05:41Z) - Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification [25.883839335786025]
We propose a novel framework consisting of a graph meta-learner, which uses GNNs based modules for fast adaptation on graph data.
Our framework gets state-of-the-art results on several few-shot graph classification tasks compared to baselines.
arXiv Detail & Related papers (2020-03-18T14:38:48Z) - Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral
Measures [14.932318540666545]
We study the problem of few shot graph classification in graph neural networks (GNNs) to recognize unseen classes, given limited labeled graph examples.
We propose an approach where a probability measure is assigned to each graph based on the spectrum of the graphs normalized Laplacian.
arXiv Detail & Related papers (2020-02-27T17:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.