論文の概要: Prototype Completion for Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2108.05010v1
- Date: Wed, 11 Aug 2021 03:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:32:15.442381
- Title: Prototype Completion for Few-Shot Learning
- Title(参考訳): ファウショット学習のためのプロトタイプ補完
- Authors: Baoquan Zhang, Xutao Li, Yunming Ye, and Shanshan Feng
- Abstract要約: 少数ショット学習は、いくつかの例で新しいクラスを認識することを目的としている。
事前学習に基づく手法は,特徴抽出器を事前学習し,最寄りのセントロイド型メタラーニングを通して微調整することで,この問題に効果的に対処する。
本稿では,完成度に基づくメタラーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.63424509914303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a
feature extractor and then fine-tuning it through the nearest centroid based
meta-learning. However, results show that the fine-tuning step makes marginal
improvements. In this paper, 1) we figure out the reason, i.e., in the
pre-trained feature space, the base classes already form compact clusters while
novel classes spread as groups with large variances, which implies that
fine-tuning feature extractor is less meaningful; 2) instead of fine-tuning
feature extractor, we focus on estimating more representative prototypes.
Consequently, we propose a novel prototype completion based meta-learning
framework. This framework first introduces primitive knowledge (i.e.,
class-level part or attribute annotations) and extracts representative features
for seen attributes as priors. Second, a part/attribute transfer network is
designed to learn to infer the representative features for unseen attributes as
supplementary priors. Finally, a prototype completion network is devised to
learn to complete prototypes with these priors. Moreover, to avoid the
prototype completion error, we further develop a Gaussian based prototype
fusion strategy that fuses the mean-based and completed prototypes by
exploiting the unlabeled samples. Extensive experiments show that our method:
(i) obtains more accurate prototypes; (ii) achieves superior performance on
both inductive and transductive FSL settings.
- Abstract(参考訳): わずかな例で新しいクラスを認識することを目的としている。
事前学習に基づく手法は,特徴抽出器を事前学習し,最寄りのセントロイドメタラーニングを通して微調整することで,この問題に効果的に対処する。
しかし、その結果は微調整が限界改善をもたらすことを示している。
本稿では,(1)事前学習された特徴空間において,基本クラスが既にコンパクトクラスタを形成しているのに対して,新しいクラスは大きな分散を持つ群として拡散しているため,微調整特徴抽出器は意味が薄い,2)微調整特徴抽出器ではなく,より代表的なプロトタイプの推定に重点を置いている理由を明らかにする。
そこで本研究では,プロトタイプの完成度に基づくメタ学習フレームワークを提案する。
このフレームワークは最初、プリミティブな知識(クラスレベルの部分または属性アノテーション)を導入し、見受けられる属性の代表的な特徴を前もって抽出する。
第2に、パート/アトリビュート転送ネットワークは、未認識属性の代表的特徴を補足優先として推測するように設計されている。
最後に,プロトタイプ完成ネットワークを考案し,これらを先行してプロトタイプを完成させる。
さらに,プロトタイプの完成誤差を回避するため,未ラベルサンプルを利用して平均および完成プロトタイプを融合するガウス型プロトタイプ融合戦略をさらに発展させる。
i)より正確なプロトタイプを得る; (ii) インダクティブおよびトランスダクティブなfsl設定の両方において優れた性能を達成する。
関連論文リスト
- Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation [0.0]
本稿では,Mixed Prototype Consistency Learning (MPCL) フレームワークを提案する。
Mean Teacherはラベル付きおよびラベルなしデータのプロトタイプを生成し、補助ネットワークはCutMixによって処理された混合データのための追加のプロトタイプを生成する。
各クラスの高品質なグローバルプロトタイプは、2つの強化されたプロトタイプを融合して形成され、一貫性学習に使用される隠れ埋め込みの分布を最適化する。
論文 参考訳(メタデータ) (2024-04-16T16:51:12Z) - Fine-Grained Prototypes Distillation for Few-Shot Object Detection [8.795211323408513]
Few-shot Object Detection (FSOD) は、新しい物体検出のためのジェネリック検出器を、少数の訓練例で拡張することを目的としている。
一般に、メタラーニングに基づく手法は、新しいサンプルをクラスプロトタイプにエンコードするために追加のサポートブランチを使用する。
より堅牢な新しいオブジェクト検出のために、特徴ある局所的コンテキストをキャプチャするためには、新しい方法が必要である。
論文 参考訳(メタデータ) (2024-01-15T12:12:48Z) - Beyond Prototypes: Semantic Anchor Regularization for Better
Representation Learning [82.29761875805369]
表現学習の最終的な目標の1つは、クラス内のコンパクトさとクラス間の十分な分離性を達成することである。
本稿では,機能セントロイドとして機能する事前定義されたクラスアンカーを用いて,特徴学習を一方向ガイドする新しい視点を提案する。
提案したSemantic Anchor Regularization (SAR) は,既存モデルのプラグアンドプレイ方式で使用することができる。
論文 参考訳(メタデータ) (2023-12-19T05:52:38Z) - Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition [15.685927265270085]
ガウス分布プロトタイプ(MGProto)の混合(mixture of Gaussian-Distributed Prototypes)と呼ばれるプロトタイプ分布を学習するための新しい生成パラダイムを提案する。
MGProtoは最先端の画像認識とOoD検出性能を実現し,解釈可能性の向上を実現している。
論文 参考訳(メタデータ) (2023-11-30T11:01:37Z) - ProtoDiff: Learning to Learn Prototypical Networks by Task-Guided
Diffusion [44.805452233966534]
プロトタイプベースのメタ学習は、数発の学習課題に対処するための強力なテクニックとして登場した。
ランダムノイズからタスク固有のプロトタイプを徐々に生成するフレームワークであるProtoDiffを紹介する。
我々は、基礎となるプロトタイプの分布を正確に捉える能力を示すために、徹底的なアブレーション研究を行っている。
論文 参考訳(メタデータ) (2023-06-26T15:26:24Z) - Evolving Semantic Prototype Improves Generative Zero-Shot Learning [73.07035277030573]
ゼロショット学習(ZSL)では、生成法は事前に定義されたセマンティックプロトタイプに基づいてクラス関連サンプル特徴を合成する。
各クラスの事前定義されたセマンティックプロトタイプは、実際のセマンティックプロトタイプと正確に一致しない。
本稿では,経験的に定義された意味的プロトタイプと,クラス関連特徴合成のための実際のプロトタイプを整合させる動的意味的プロトタイプ(DSP)法を提案する。
論文 参考訳(メタデータ) (2023-06-12T08:11:06Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
本稿では,大規模な画像収集において未知のカテゴリを識別することを目的とした,新しいカテゴリ発見(NCD)の課題に取り組む。
本稿では,プロトタイプ表現学習とプロトタイプ自己学習という,2つの主要な段階からなる適応型プロトタイプ学習手法を提案する。
本研究では,4つのベンチマークデータセットについて広範な実験を行い,提案手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-01T16:34:33Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z) - Prototype Completion with Primitive Knowledge for Few-Shot Learning [20.449056536438658]
少ないショット学習は、新しいクラスのための分類器を少数の例で学習することを目的とした、難しい課題である。
事前学習に基づくメタラーニング手法は,特徴抽出器を事前学習し,最寄りのセントロイド型メタラーニングを通して微調整することで,この問題に効果的に対処する。
本稿では,完成度に基づくメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-10T16:09:34Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。