論文の概要: Few-Shot Segmentation with Global and Local Contrastive Learning
- arxiv url: http://arxiv.org/abs/2108.05293v1
- Date: Wed, 11 Aug 2021 15:52:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:26:13.294848
- Title: Few-Shot Segmentation with Global and Local Contrastive Learning
- Title(参考訳): グローバル・ローカル・コントラスト学習によるFew-Shotセグメンテーション
- Authors: Weide Liu, Zhonghua Wu, Henghui Ding, Fayao Liu, Jie Lin, Guosheng Lin
- Abstract要約: 提案するグローバルローカルコントラスト学習を用いて,ラベルのない画像からクエリ情報を学習するための先行抽出器を提案する。
クエリー画像の以前の領域マップを生成し、オブジェクトの位置を判断し、サポート機能とのクロスインタラクションを行うためのガイダンスを作成する。
ベルとホイッスルを使わずに、提案手法は、数発のセグメンテーションタスクに対して、新しい最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 51.677179037590356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the challenging task of few-shot segmentation.
Previous few-shot segmentation methods mainly employ the information of support
images as guidance for query image segmentation. Although some works propose to
build cross-reference between support and query images, their extraction of
query information still depends on the support images. We here propose to
extract the information from the query itself independently to benefit the
few-shot segmentation task. To this end, we first propose a prior extractor to
learn the query information from the unlabeled images with our proposed
global-local contrastive learning. Then, we extract a set of predetermined
priors via this prior extractor. With the obtained priors, we generate the
prior region maps for query images, which locate the objects, as guidance to
perform cross interaction with support features. In such a way, the extraction
of query information is detached from the support branch, overcoming the
limitation by support, and could obtain more informative query clues to achieve
better interaction. Without bells and whistles, the proposed approach achieves
new state-of-the-art performance for the few-shot segmentation task on
PASCAL-5$^{i}$ and COCO datasets.
- Abstract(参考訳): 本研究では,数発のセグメンテーションの課題に対処する。
従来の少数ショットセグメンテーションでは、主にクエリ画像セグメンテーションのガイダンスとしてサポート画像の情報を使用している。
サポートイメージとクエリイメージ間の相互参照を構築することを提案する研究もあるが、クエリ情報の抽出はサポートイメージに依存している。
本稿では,クエリ自体から独立して情報を抽出して,数発のセグメンテーションタスクの恩恵を受けることを提案する。
そこで本研究では,提案するグローバル局所コントラスト学習を用いて,ラベルなし画像からクエリ情報を学習するための先行抽出器を提案する。
そして、この先行抽出器を介して所定の事前の集合を抽出する。
得られた前処理により,クエリ画像に対する先行領域マップを生成し,対象を探索し,サポート機能との相互インタラクションを行うためのガイダンスとする。
このようにして、クエリ情報の抽出はサポートブランチから切り離され、サポートによる制限を克服し、より良いインタラクションを実現するためのより情報的なクエリヒントを得ることができる。
ベルとホイッスルがなければ、提案手法はpascal-5$^{i}$とcocoデータセットのマイナショットセグメンテーションタスクの新たな最先端性能を実現する。
関連論文リスト
- Segmentation-guided Attention for Visual Question Answering from Remote Sensing Images [1.6932802756478726]
Visual Question Answering for Remote Sensing (RSVQA)は、リモートセンシング画像の内容に関する自然言語の質問に答えることを目的としたタスクである。
セグメンテーションによって導かれるアテンションメカニズムをRSVQAパイプラインに埋め込むことを提案する。
16のセグメンテーションクラスと問合せ/問合せペアでアノテートされた非常に高解像度のRGB写真を利用する新しいVQAデータセットを提供する。
論文 参考訳(メタデータ) (2024-07-11T16:59:32Z) - MatchSeg: Towards Better Segmentation via Reference Image Matching [5.55078598520531]
ほとんどショットラーニングは、サポートセットとして知られる小さなラベル付きデータセットを使用して、新しいラベル付きイメージの予測ラベルをガイドすることで、注釈付きデータの必要性を克服することを目的としている。
このパラダイムに着想を得たMatchSegは,戦略的基準画像マッチングによる医用画像のセグメンテーションを強化する新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-23T18:04:58Z) - Self-Correlation and Cross-Correlation Learning for Few-Shot Remote
Sensing Image Semantic Segmentation [27.59330408178435]
リモートセマンティックセマンティックセマンティックセマンティクスは、クエリイメージからターゲットオブジェクトをセグメントすることを学ぶことを目的としている。
本稿では,数発のリモートセンシング画像セマンティックセマンティックセグメンテーションのための自己相関・相互相関学習ネットワークを提案する。
本モデルは,サポート画像とクエリ画像の自己相関と相互相関の両方を考慮し,一般化を促進させる。
論文 参考訳(メタデータ) (2023-09-11T21:53:34Z) - Few-shot Segmentation with Optimal Transport Matching and Message Flow [50.9853556696858]
サポート情報を完全に活用するためには、少数ショットのセマンティックセマンティックセグメンテーションが不可欠である。
本稿では,最適輸送マッチングモジュールを備えた通信マッチングネットワーク(CMNet)を提案する。
PASCAL VOC 2012、MS COCO、FSS-1000データセットによる実験により、我々のネットワークは最新の数ショットセグメンテーション性能を新たに達成した。
論文 参考訳(メタデータ) (2021-08-19T06:26:11Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation Method (TRFS)
我々のモデルは,グローバル・エンハンスメント・モジュール(GEM)とローカル・エンハンスメント・モジュール(LEM)の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2021-08-04T20:09:21Z) - Few-Shot Segmentation via Cycle-Consistent Transformer [74.49307213431952]
本稿では,サポートとターゲット画像間の画素ワイドな関係を利用して,数ショットのセマンティックセマンティックセグメンテーション作業を容易にすることに焦点を当てる。
本稿では, 有害なサポート機能を除去するために, 新規なサイクル一貫性アテンション機構を提案する。
提案したCyCTRは,従来の最先端手法と比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-06-04T07:57:48Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
単発セグメンテーションのための自己誘導学習手法を提案する。
注釈付き支持画像の初期予測を行うことにより、被覆および検出された前景領域を一次および補助支持ベクトルに符号化する。
プライマリサポートベクターと補助サポートベクターの両方を集約することで、クエリイメージ上でより良いセグメンテーション性能が得られます。
論文 参考訳(メタデータ) (2021-03-30T07:36:41Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。