Topological quantum state control through exceptional-point proximity
- URL: http://arxiv.org/abs/2108.05365v3
- Date: Fri, 14 Jan 2022 11:33:19 GMT
- Title: Topological quantum state control through exceptional-point proximity
- Authors: Maryam Abbasi, Weijian Chen, Mahdi Naghiloo, Yogesh N. Joglekar, and
Kater W. Murch
- Abstract summary: We study the quantum evolution of a non-Hermitian qubit realized as a submanifold of a dissipative superconducting transmon circuit.
Real-time tuning of the system parameters to encircle an exceptional point results in non-reciprocal quantum state transfer.
- Score: 0.33030080038744947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum evolution of a non-Hermitian qubit realized as a
submanifold of a dissipative superconducting transmon circuit. Real-time tuning
of the system parameters to encircle an exceptional point results in
non-reciprocal quantum state transfer. We further observe chiral geometric
phases accumulated under state transport, verifying the quantum coherent nature
of the evolution in the complex energy landscape and distinguishing between
coherent and incoherent effects associated with exceptional point encircling.
Our work demonstrates an entirely new method for control over quantum state
vectors, highlighting new facets of quantum bath engineering enabled through
dynamical non-Hermitian control.
Related papers
- Universal scaling of quantum state transport in one-dimensional topological chain under nonadiabatic dynamics [4.9347081318119015]
We study the scaling of quantum state transport in a one-dimensional topological system subject to a linear drive.
We illustrate the power-law dependencies of the quantum state's transport distance, width, and peak magnitude on the driving velocity.
arXiv Detail & Related papers (2024-06-26T02:08:28Z) - Controllable non-Hermitian qubit-qubit Coupling in Superconducting quantum Circuit [3.18175475159604]
We study the Energy level degeneracy and quantum state evolution in tunable coupling superconducting quantum circuit.
The qubit's effective energy level and damping rate can be continually tuned in superconducting circuit.
The controllable non-Hermiticity provides new insights and methods for exploring the unconventional quantum effects in superconducting quantum circuit.
arXiv Detail & Related papers (2024-04-04T11:58:03Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum simulation of parity-time symmetry breaking with a
superconducting quantum processor [0.0]
We simulate the evolution under such Hamiltonians in the quantum regime on a superconducting quantum processor.
In a two-qubit setting, we show that the entanglement can be modified by local operations.
arXiv Detail & Related papers (2021-11-23T17:43:44Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.