論文の概要: A Mathematical Approach to Constraining Neural Abstraction and the
Mechanisms Needed to Scale to Higher-Order Cognition
- arxiv url: http://arxiv.org/abs/2108.05494v1
- Date: Thu, 12 Aug 2021 02:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-13 14:26:51.624898
- Title: A Mathematical Approach to Constraining Neural Abstraction and the
Mechanisms Needed to Scale to Higher-Order Cognition
- Title(参考訳): 神経抽象化の制約に対する数学的アプローチと高次認知へのスケールに必要なメカニズム
- Authors: Ananta Nair
- Abstract要約: 人工知能はこの10年で大きな進歩を遂げてきたが、人工知能の最もよく知られている例である人間の脳にはまだ及ばない。
神経の過程があまり知られていないため、脳はほんの少しで跳躍を達成できる。
本稿では, グラフ理論とスペクトルグラフ理論を用いた数学的アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial intelligence has made great strides in the last decade but still
falls short of the human brain, the best-known example of intelligence. Not
much is known of the neural processes that allow the brain to make the leap to
achieve so much from so little beyond its ability to create knowledge
structures that can be flexibly and dynamically combined, recombined, and
applied in new and novel ways. This paper proposes a mathematical approach
using graph theory and spectral graph theory, to hypothesize how to constrain
these neural clusters of information based on eigen-relationships. This same
hypothesis is hierarchically applied to scale up from the smallest to the
largest clusters of knowledge that eventually lead to model building and
reasoning.
- Abstract(参考訳): 人工知能は過去10年で大きな進歩を遂げてきたが、人工知能の最もよく知られている例である人間の脳にはまだ及ばない。
神経のプロセスについてはあまり知られていないが、脳は、柔軟に動的に結合し、再結合し、新しい方法で適用できる知識構造を創り出す能力の限界をはるかに越えて、跳躍を実現することができる。
本稿では,グラフ理論とスペクトルグラフ理論を用いた数学的アプローチを提案する。
この仮説は階層的に応用され、最小から最大の知識の集合にスケールアップされ、最終的にはモデルの構築と推論に繋がる。
関連論文リスト
- Coin-Flipping In The Brain: Statistical Learning with Neuronal Assemblies [9.757971977909683]
脳の計算モデルNEMOにおける統計的学習の出現について検討する。
アセンブリ間の接続が統計を記録し、環境騒音を利用して確率的選択をすることができることを示す。
論文 参考訳(メタデータ) (2024-06-11T20:51:50Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Computation with Sequences in a Model of the Brain [11.15191997898358]
神経活動から認知がどのように生じるかは神経科学の中心的な問題である。
本研究は, シナプス重量と可塑性により, 時刻を優先的に捉えることができることを示す。
我々は、任意の有限状態機械が、シーケンスの適切なパターンの提示を通して、同様の方法で学習可能であることを示す。
論文 参考訳(メタデータ) (2023-06-06T15:58:09Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - CogNGen: Constructing the Kernel of a Hyperdimensional Predictive
Processing Cognitive Architecture [79.07468367923619]
神経生物学的に妥当な2つの計算モデルを組み合わせた新しい認知アーキテクチャを提案する。
我々は、現代の機械学習技術の力を持つ認知アーキテクチャを開発することを目指している。
論文 参考訳(メタデータ) (2022-03-31T04:44:28Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。