論文の概要: Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems
- arxiv url: http://arxiv.org/abs/2205.01128v1
- Date: Mon, 2 May 2022 18:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 04:05:11.186332
- Title: Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems
- Title(参考訳): 神経複合コンピューティング:認知の中枢パラドックスから新しい世代のAIシステムへ
- Authors: Paul Smolensky, R. Thomas McCoy, Roland Fernandez, Matthew Goldrick,
Jianfeng Gao
- Abstract要約: AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
- 参考スコア(独自算出の注目度): 120.297940190903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What explains the dramatic progress from 20th-century to 21st-century AI, and
how can the remaining limitations of current AI be overcome? The widely
accepted narrative attributes this progress to massive increases in the
quantity of computational and data resources available to support statistical
learning in deep artificial neural networks. We show that an additional crucial
factor is the development of a new type of computation. Neurocompositional
computing adopts two principles that must be simultaneously respected to enable
human-level cognition: the principles of Compositionality and Continuity. These
have seemed irreconcilable until the recent mathematical discovery that
compositionality can be realized not only through discrete methods of symbolic
computing, but also through novel forms of continuous neural computing. The
revolutionary recent progress in AI has resulted from the use of limited forms
of neurocompositional computing. New, deeper forms of neurocompositional
computing create AI systems that are more robust, accurate, and comprehensible.
- Abstract(参考訳): 20世紀から21世紀にかけてのAIの劇的な進歩と、現在のAIの残りの制限を克服するにはどうすればよいのか?
広く受け入れられているナラティブは、この進歩を、ディープニューラルネットワークにおける統計的学習をサポートするために利用可能な計算量とデータ量の増加に帰している。
さらに,新たな計算手法の開発が重要な要因であることを示す。
ニューロコンポジションコンピューティングは、人間のレベルの認識を可能にするために同時に尊重しなければならない2つの原則、すなわち構成性と連続性の原則を採用する。
これらは、シンボリックコンピューティングの離散的な方法だけでなく、新しいタイプの連続型ニューラルネットワークによって構成性が実現できるという最近の数学的発見まで、相容れないように思われた。
aiの最近の革命的な進歩は、限られた形態のニューロコンポジションコンピューティングの使用によって生じた。
新しいより深い形のニューロコンポジションコンピューティングは、より堅牢で正確で理解しやすいaiシステムを創り出す。
関連論文リスト
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
ニューロシンボリックAIは、解釈可能性、堅牢性、信頼性を高めるニューラルネットワークとシンボリックアプローチを融合して、有望なパラダイムとして出現する。
最近のニューロシンボリックシステムは、推論と認知能力を備えた協調的な人間-AIシナリオにおいて大きな可能性を示している。
まず, ニューロシンボリックAIアルゴリズムを体系的に分類し, 実行時, メモリ, 計算演算子, 疎結合性, システム特性を実験的に評価し, 解析する。
論文 参考訳(メタデータ) (2024-09-20T01:32:14Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ニューラル・ニューラル・ニューラル・インテリジェンス(Neuro-AMI)の概要を述べる。
本稿では,ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ラーニング・ツールについて概説する。
論文 参考訳(メタデータ) (2023-10-14T13:17:58Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
AIの信頼、安全性、解釈可能性、説明責任に関する懸念は、影響力のある思想家によって提起された。
多くは、知識表現と推論を深層学習に統合する必要性を認識している。
ニューラル・シンボリック・コンピューティングは、推論と説明可能性を備えた堅牢な学習をニューラルネットワークで組み合わせようとする研究の活発な領域である。
論文 参考訳(メタデータ) (2020-12-10T18:31:38Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
機械学習は、特にディープラーニングの形で、人工知能の最近の基本的な発展のほとんどを駆動している。
ディープラーニングは、オブジェクト/パターン認識、音声と自然言語処理、自動運転車、インテリジェントな自己診断ツール、自律ロボット、知識に富んだパーソナルアシスタント、監視といった分野に成功している。
本稿では、電力効率の高いインメモリコンピューティング、ディープラーニングアクセラレーター、スパイクニューラルネットワークの実装のための潜在的なソリューションとして、CMOSハードウェア技術、memristorsを超越した小説をレビューする。
論文 参考訳(メタデータ) (2020-04-30T16:49:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。