論文の概要: Analyzing hierarchical multi-view MRI data with StaPLR: An application
to Alzheimer's disease classification
- arxiv url: http://arxiv.org/abs/2108.05761v1
- Date: Thu, 12 Aug 2021 14:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-13 14:41:03.314758
- Title: Analyzing hierarchical multi-view MRI data with StaPLR: An application
to Alzheimer's disease classification
- Title(参考訳): StaPLRを用いた階層的多視点MRIデータの解析:アルツハイマー病分類への応用
- Authors: Wouter van Loon, Frank de Vos, Marjolein Fokkema, Botond Szabo, Marisa
Koini, Reinhold Schmidt, Mark de Rooij
- Abstract要約: そこで本研究では,Stacked Penalized Logistic regression (StaPLR) を用いて,予測において最も重要なビューを自動的に選択する方法について述べる。
StaPLRをアルツハイマー病分類に応用し、3種類のスキャンからMRI測定値が算出された。
StaPLRは、どのスキャンタイプとどのMRI測定が分類において最も重要であるかを識別でき、分類性能において弾性ネット回帰よりも優れる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view data refers to a setting where features are divided into feature
sets, for example because they correspond to different sources. Stacked
penalized logistic regression (StaPLR) is a recently introduced method that can
be used for classification and automatically selecting the views that are most
important for prediction. We show how this method can easily be extended to a
setting where the data has a hierarchical multi-view structure. We apply StaPLR
to Alzheimer's disease classification where different MRI measures have been
calculated from three scan types: structural MRI, diffusion-weighted MRI, and
resting-state fMRI. StaPLR can identify which scan types and which MRI measures
are most important for classification, and it outperforms elastic net
regression in classification performance.
- Abstract(参考訳): マルチビューデータ(multi-view data)は、機能が異なるソースに対応するため、機能セットに分割する設定を指す。
Stacked Penalized Logistic regression (StaPLR)は、最近導入された手法であり、分類に使用でき、予測に最も重要なビューを自動的に選択できる。
本稿では,この手法を階層的マルチビュー構造を有する設定に容易に拡張できることを示す。
StaPLRをアルツハイマー病分類に適用し, 構造MRI, 拡散強調MRI, 静止状態fMRIの3種類の画像からMRI測定値が算出された。
StaPLRは、どのスキャンタイプとどのMRI測定が分類において最も重要であるかを識別でき、分類性能において弾性ネット回帰よりも優れる。
関連論文リスト
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Classification of Alzheimer's Dementia vs. Healthy subjects by studying structural disparities in fMRI Time-Series of DMN [4.349838917565205]
興味のある異なる地域からの時系列は、健康な人と不健康な人の大きな違いを示す可能性がある。
この仮説は、時系列における構造レベルの違いが被写体群間の識別につながるというものである。
オートエンコーダに基づくモデルを用いて、ネットワークをトレーニングして入力データを再構築することで、データの効率的な表現を学習する。
論文 参考訳(メタデータ) (2024-07-29T13:22:49Z) - Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in mpMRI [0.0]
本研究では,一階統計的特徴,ハラリックテクスチャ的特徴,および局所二分法パターンによる分類への寄与を分析した。
我々は、分類結果を決定する少数の特徴を特定し、説明可能なAIアプローチの開発に役立つかもしれない。
論文 参考訳(メタデータ) (2024-06-21T18:12:58Z) - NEURO HAND: A weakly supervised Hierarchical Attention Network for
interpretable neuroimaging abnormality Detection [0.516706940452805]
臨床病院で得られたMRIスキャンを用いて, 異常検出のための階層的注意ネットワークを提案する。
提案するネットワークは,非体積データ(高分解能MRIスライススタック)に適しており,二値検査レベルのラベルからトレーニングすることができる。
論文 参考訳(メタデータ) (2023-11-06T09:55:19Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Explainable unsupervised multi-modal image registration using deep
networks [2.197364252030876]
MRI画像登録は、異なるモダリティ、時間点、スライスから幾何学的に「ペア」診断することを目的としている。
本研究では,我々のDLモデルが完全に説明可能であることを示し,さらなる医用画像データへのアプローチを一般化するための枠組みを構築した。
論文 参考訳(メタデータ) (2023-08-03T19:13:48Z) - Multi-Modality Multi-Scale Cardiovascular Disease Subtypes
Classification Using Raman Image and Medical History [2.9315342447802317]
これらの問題に対処する2つのコアモジュールを持つ新しいディープラーニング手法であるM3Sというマルチモードマルチスケールモデルを提案する。
まず,図形角度場(GAF)による様々な解像度画像にRSデータを変換してニュアンスを拡大する。
第2に、RSと医療履歴データを組み合わせて分類能力を高めるために、確率行列と重み行列を用いる。
論文 参考訳(メタデータ) (2023-04-18T22:09:16Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Overcoming Catastrophic Forgetting with Gaussian Mixture Replay [79.0660895390689]
ガウス混合モデル(GMM)に基づく連続学習(CL)のためのリハーサルベースアプローチを提案する。
過去のタスクからサンプルを生成し,現在のトレーニングデータと統合することで,破滅的忘れ(cf)を緩和する。
複数の画像データセットでGMRを評価し,クラス別サブタスクに分割する。
論文 参考訳(メタデータ) (2021-04-19T11:41:34Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。