論文の概要: NEURO HAND: A weakly supervised Hierarchical Attention Network for
interpretable neuroimaging abnormality Detection
- arxiv url: http://arxiv.org/abs/2311.02992v2
- Date: Wed, 17 Jan 2024 01:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 20:14:19.564344
- Title: NEURO HAND: A weakly supervised Hierarchical Attention Network for
interpretable neuroimaging abnormality Detection
- Title(参考訳): ニューロハンド : 解釈可能な神経画像異常検出のための階層的注意ネットワーク
- Authors: David A. Wood
- Abstract要約: 臨床病院で得られたMRIスキャンを用いて, 異常検出のための階層的注意ネットワークを提案する。
提案するネットワークは,非体積データ(高分解能MRIスライススタック)に適しており,二値検査レベルのラベルからトレーニングすることができる。
- 参考スコア(独自算出の注目度): 0.516706940452805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical neuroimaging data is naturally hierarchical. Different magnetic
resonance imaging (MRI) sequences within a series, different slices covering
the head, and different regions within each slice all confer different
information. In this work we present a hierarchical attention network for
abnormality detection using MRI scans obtained in a clinical hospital setting.
The proposed network is suitable for non-volumetric data (i.e. stacks of
high-resolution MRI slices), and can be trained from binary examination-level
labels. We show that this hierarchical approach leads to improved
classification, while providing interpretability through either coarse inter-
and intra-slice abnormality localisation, or giving importance scores for
different slices and sequences, making our model suitable for use as an
automated triaging system in radiology departments.
- Abstract(参考訳): 臨床神経画像データは自然に階層的である。
時系列内の異なる磁気共鳴イメージング(MRI)シーケンス、頭部を覆う異なるスライス、および各スライス内の異なる領域は、それぞれ異なる情報を参照する。
本稿では,臨床病院におけるmriスキャンを用いた異常検出のための階層的注意ネットワークを提案する。
提案するネットワークは,非体積データ(高分解能MRIスライススタック)に適しており,二値検査レベルのラベルからトレーニングすることができる。
この階層的アプローチによって分類が向上し, 粗い間およびスライス内異常局所化, あるいは異なるスライスやシーケンスに重要なスコアを与えることにより, 放射線学部門における自動トリアージシステムとしての使用に適したモデルが得られた。
関連論文リスト
- Automated Classification of Body MRI Sequence Type Using Convolutional
Neural Networks [7.734037486455235]
胸部,腹部,骨盤のレベルで得られた3次元MRIの配列を自動分類する方法を提案する。
われわれは,胸部,腹部,骨盤のMRI画像の3次元分類法を初めて開発した。
論文 参考訳(メタデータ) (2024-02-12T22:34:57Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
マルチシーケンスMRI(Multi-sequence magnetic resonance imaging)は、現代の臨床研究とディープラーニング研究の両方に広く応用されている。
画像取得プロトコルの違いや、患者のコントラスト剤の禁忌が原因で、MRIの1つ以上の配列が欠落することがしばしば起こる。
1つの有望なアプローチは、生成モデルを利用して欠落したシーケンスを合成することであり、これはサロゲート獲得の役割を果たす。
論文 参考訳(メタデータ) (2023-09-06T19:01:58Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、運動ニューロン変性を伴う複雑な神経変性疾患である。
ディープラーニングは、コンピュータビジョンにおける機械学習プログラムの傑出したクラスになった。
本研究では、視覚変換器アーキテクチャのパワーを活用してALS対象と制御群を区別するフレームワークであるSF2Formerを紹介する。
論文 参考訳(メタデータ) (2023-02-21T18:16:20Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Optimising Knee Injury Detection with Spatial Attention and Validating
Localisation Ability [0.5772546394254112]
この研究は、膝の外傷検出を最適化するための空間的注意ブロックを備えた、事前訓練された多視点畳み込みニューラルネットワーク(CNN)を用いている。
画像レベルのラベルが付いたオープンソースのMRIデータセットを用いて解析を行った。
論文 参考訳(メタデータ) (2021-08-18T13:24:17Z) - Deep Learning-based Type Identification of Volumetric MRI Sequences [5.407839873345339]
MRI配列の標準化されていない命名は、自動システムでは識別が困難である。
本稿では,深層学習に基づく脳MRIシークエンスを同定するシステムを提案する。
我々のシステムは96.81%の精度でシーケンスタイプを分類できる。
論文 参考訳(メタデータ) (2021-06-06T18:34:47Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。