Bayesian quantum thermometry based on thermodynamic length
- URL: http://arxiv.org/abs/2108.05901v2
- Date: Thu, 28 Apr 2022 08:27:55 GMT
- Title: Bayesian quantum thermometry based on thermodynamic length
- Authors: Mathias R. J{\o}rgensen, Jan Ko{\l}ody\'nski, Mohammad Mehboudi,
Mart\'i Perarnau-Llobet and Jonatan B. Brask
- Abstract summary: We propose a theory of temperature estimation of quantum systems.
In this regime the problem of establishing a well-defined measure of estimation precision becomes non-trivial.
We propose a fully Bayesian approach to temperature estimation based on the concept of thermodynamic length.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a theory of temperature estimation of quantum
systems, which is applicable in the regime of non-negligible prior temperature
uncertainty and limited measurement data. In this regime the problem of
establishing a well-defined measure of estimation precision becomes
non-trivial, and furthermore the construction of a suitable criterion for
optimal measurement design must be re-examined to account for the prior
uncertainty. We propose a fully Bayesian approach to temperature estimation
based on the concept of thermodynamic length, which solves both these problems.
As an illustration of this framework, we consider thermal spin-$1/2$ particles
and investigate the fundamental difference between two cases; on the one hand,
when the spins are probing the temperature of a heat reservoir and, on the
other, when the spins themselves constitute the sample.
Related papers
- Topological quantum thermometry [0.0]
An optimal local quantum thermometer saturates the fundamental lower bound for the thermal state temperature estimation accuracy.
We show that the optimal local quantum thermometer can be realized in an experimentally feasible system of spinless fermions confined in a one-dimensional optical lattice.
arXiv Detail & Related papers (2023-11-24T14:49:44Z) - Global quantum thermometry based on the optimal biased bound [10.11168891945202]
We derive two basic bounds on thermometry precision in the global setting.
We show their thermometry performance by two specific applications, i.e., noninteracting spin-1/2 gas and a general N-level thermal equilibrium quantum probe.
arXiv Detail & Related papers (2023-05-15T07:24:48Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Optimal Quantum Thermometry with Coarse-grained Measurements [0.0]
We explore the precision limits for temperature estimation when only coarse-grained measurements are available.
We apply our results to many-body systems and nonequilibrium thermometry.
arXiv Detail & Related papers (2020-11-20T17:12:55Z) - Non-equilibrium readiness and accuracy of Gaussian Quantum Thermometers [0.0]
We show how quantum entanglement can enhance the readiness of composite Gaussian thermometers.
We show that non-equilibrium conditions do not guarantee the best sensitivities in temperature estimation.
arXiv Detail & Related papers (2020-05-05T18:00:01Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Tight bound on finite-resolution quantum thermometry at low temperatures [0.0]
We investigate fundamental precision limits for thermometry on cold quantum systems.
We derive a tight bound on the optimal precision scaling with temperature, as the temperature approaches zero.
arXiv Detail & Related papers (2020-01-13T08:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.