論文の概要: Efficient Federated Meta-Learning over Multi-Access Wireless Networks
- arxiv url: http://arxiv.org/abs/2108.06453v1
- Date: Sat, 14 Aug 2021 03:23:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 14:56:18.907593
- Title: Efficient Federated Meta-Learning over Multi-Access Wireless Networks
- Title(参考訳): マルチアクセス無線ネットワーク上での効率的なフェデレーションメタラーニング
- Authors: Sheng Yue, Ju Ren, Jiang Xin, Deyu Zhang, Yaoxue Zhang, Weihua Zhuang
- Abstract要約: フェデレーションメタラーニング(FML)は、今日のエッジラーニング分野におけるデータ制限と不均一性に対処するための、有望なパラダイムとして登場した。
本稿では,FMLアルゴリズム(NUFM)を一様でないデバイス選択方式で開発し,収束を加速する。
本稿では,マルチアクセス無線システムにおけるNUFMの統合による資源配分問題を提案する。
- 参考スコア(独自算出の注目度): 26.513076310183273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated meta-learning (FML) has emerged as a promising paradigm to cope
with the data limitation and heterogeneity challenges in today's edge learning
arena. However, its performance is often limited by slow convergence and
corresponding low communication efficiency. Besides, since the wireless
bandwidth and IoT devices' energy capacity are usually insufficient, it is
crucial to control the resource allocation and energy consumption when
deploying FML in realistic wireless networks. To overcome these challenges, in
this paper, we first rigorously analyze each device's contribution to the
global loss reduction in each round and develop an FML algorithm (called NUFM)
with a non-uniform device selection scheme to accelerate the convergence. After
that, we formulate a resource allocation problem integrating NUFM in
multi-access wireless systems to jointly improve the convergence rate and
minimize the wall-clock time along with energy cost. By deconstructing the
original problem step by step, we devise a joint device selection and resource
allocation strategy (called URAL) to solve the problem and provide theoretical
guarantees. Further, we show that the computational complexity of NUFM can be
reduced from $O(d^2)$ to $O(d)$ (with $d$ being the model dimension) via
combining two first-order approximation techniques. Extensive simulation
results demonstrate the effectiveness and superiority of the proposed methods
by comparing with the existing baselines.
- Abstract(参考訳): フェデレーションメタラーニング(fml)は、今日のエッジラーニング分野におけるデータ制限と多様性の課題に対処するための有望なパラダイムとして登場した。
しかし、その性能は遅い収束とそれに対応する低通信効率によって制限されることが多い。
さらに、無線帯域とIoTデバイスのエネルギー容量は通常不十分であるため、現実的な無線ネットワークにFMLをデプロイする際には、リソース割り当てとエネルギー消費を制御することが不可欠である。
これらの課題を克服するため,本論文ではまず,各ラウンドのグローバルロス低減に対する各デバイスの役割を厳密に解析し,収束を加速する非一様デバイス選択スキームを用いたfmlアルゴリズム(nufm)を開発した。
その後,マルチアクセス無線システムにおいてnfmを統合する資源割当問題を定式化し,コンバージェンス率を向上し,壁時計時間の最小化とエネルギーコストの削減を図る。
元の問題を段階的に分解することにより,デバイス選択とリソース割当戦略(uralと呼ばれる)を共同して解決し,理論的保証を提供する。
さらに, 2 つの一階近似手法を組み合わせることで, nufm の計算複雑性を $o(d^2)$ から $o(d)$ (モデル次元は $d$ で) に削減できることを示した。
シミュレーションの結果,提案手法の有効性と優位性について,既存のベースラインと比較した。
関連論文リスト
- Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
フェデレートラーニング(FL)では、エッジデバイスがローカルトレーニングを実行し、パラメータサーバと情報を交換する必要がある。
実用FLシステムにおける重要な課題は、バッテリ限定エッジ装置の急激なエネルギー枯渇である。
FLシステムにエネルギー回収技術を適用し, エッジデバイスを連続的に駆動する環境エネルギーを抽出する。
論文 参考訳(メタデータ) (2024-05-17T03:41:40Z) - Adaptive Decentralized Federated Learning in Energy and Latency Constrained Wireless Networks [4.03161352925235]
中央ノードで集約されたパラメータを持つフェデレートラーニング(FL)では、通信オーバーヘッドがかなり懸念される。
最近の研究では、分散フェデレートラーニング(DFL)が実現可能な代替手段として紹介されている。
エネルギーと遅延の制約を考慮してDFLの損失関数を最小化する問題を定式化する。
論文 参考訳(メタデータ) (2024-03-29T09:17:40Z) - Wirelessly Powered Federated Learning Networks: Joint Power Transfer,
Data Sensing, Model Training, and Resource Allocation [24.077525032187893]
フェデレートラーニング(FL)は、無線ネットワークで多くの成功を収めている。
FLの実装は、モバイルデバイス(MD)のエネルギー制限と、MDにおけるトレーニングデータの可用性によって妨げられている。
無線送電と持続可能なFLネットワークの統合
論文 参考訳(メタデータ) (2023-08-09T13:38:58Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
ヘテロジニアスデータによる不均一な統計的課題を解決するために, 分散されたニュートン型ニュートン型トレーニングスキームであるFedOVAを提案する。
FedOVAはマルチクラス分類問題をより単純なバイナリ分類問題に分解し、アンサンブル学習を用いてそれぞれの出力を結合する。
論文 参考訳(メタデータ) (2021-10-14T17:35:24Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。