論文の概要: High-dimensional Assisted Generative Model for Color Image Restoration
- arxiv url: http://arxiv.org/abs/2108.06460v1
- Date: Sat, 14 Aug 2021 04:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 15:19:54.285141
- Title: High-dimensional Assisted Generative Model for Color Image Restoration
- Title(参考訳): カラー画像復元のための高次元支援生成モデル
- Authors: Kai Hong, Chunhua Wu, Cailian Yang, Minghui Zhang, Yancheng Lu, Yuhao
Wang, and Qiegen Liu
- Abstract要約: 本研究は,カラー画像復元作業において,高次元のスコアベース生成モデルを利用する教師なしのディープラーニング手法を提案する。
スコアベース生成モデルにおけるサンプル数と内部次元を考慮すると、チャネルコピー変換はサンプル数を増やし、ピクセルスケール変換は実現可能な次元空間を減少させる2つの異なる高次元方法が提案される。
高次元表現を学習することの難しさを軽減するために,性能を活用するためのプログレッシブ戦略を提案する。
- 参考スコア(独自算出の注目度): 12.459091135428885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an unsupervised deep learning scheme that exploiting
high-dimensional assisted score-based generative model for color image
restoration tasks. Considering that the sample number and internal dimension in
score-based generative model have key influence on estimating the gradients of
data distribution, two different high-dimensional ways are proposed: The
channel-copy transformation increases the sample number and the pixel-scale
transformation decreases feasible space dimension. Subsequently, a set of
high-dimensional tensors represented by these transformations are used to train
the network through denoising score matching. Then, sampling is performed by
annealing Langevin dynamics and alternative data-consistency update.
Furthermore, to alleviate the difficulty of learning high-dimensional
representation, a progressive strategy is proposed to leverage the performance.
The proposed unsupervised learning and iterative restoration algo-rithm, which
involves a pre-trained generative network to obtain prior, has transparent and
clear interpretation compared to other data-driven approaches. Experimental
results on demosaicking and inpainting conveyed the remarkable performance and
diversity of our proposed method.
- Abstract(参考訳): 本研究では,高次元スコアベース生成モデルを用いたカラー画像復元のための教師なし深層学習手法を提案する。
スコアベース生成モデルのサンプル数と内部次元がデータ分布の勾配推定に重要な影響を与えることを考慮し、チャネルコピー変換はサンプル数を増加させ、ピクセルスケール変換は実現可能な空間次元を減少させる。
その後、これらの変換で表される高次元テンソルの集合を用いて、スコアマッチングを denoising score matching によってネットワークを訓練する。
次に、ランジュバンダイナミクスと代替データ一貫性更新をアニーリングしてサンプリングを行う。
さらに,高次元表現を学習することの難しさを軽減するために,性能を活用するためのプログレッシブ戦略を提案する。
事前学習のための事前学習型生成ネットワークを含む教師なし学習と反復的復元アルゴリズムは,他のデータ駆動型アプローチと比較して透明で明確な解釈が可能である。
解体・塗布実験の結果,提案手法の顕著な性能と多様性が得られた。
関連論文リスト
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
本稿では,未決定の線形逆問題に対する空間変動正規化モデルの開発に焦点をあてる。
提案モデルの主な目的は,ディノベーションと細部・縁の保存のバランスを良くすることである。
畳み込みニューラルネットワークは、トレーニングにおいて弾性損失関数を用いて、基底真理像とその勾配を近似するように設計されている。
論文 参考訳(メタデータ) (2024-04-25T08:58:41Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - A Simplified Framework for Contrastive Learning for Node Representations [2.277447144331876]
グラフにノードを埋め込むために,グラフニューラルネットワークと組み合わせてコントラスト学習を展開できる可能性を検討する。
組込み行列の単純なカラムワイド後処理により, 組込み結果の品質とトレーニング時間を大幅に改善できることを示す。
この修正により、下流の分類タスクは最大1.5%改善され、8つの異なるベンチマークのうち6つで既存の最先端のアプローチに勝っている。
論文 参考訳(メタデータ) (2023-05-01T02:04:36Z) - Deep Graph Reprogramming [112.34663053130073]
グラフニューラルネットワーク(GNN)に適したタスク再利用モデル「ディープグラフ再プログラミング」
本稿では,モデル再プログラミングパラダイムと並行して,革新的なデータ再プログラミングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-28T02:04:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Doubly Reparameterized Importance Weighted Structure Learning for Scene
Graph Generation [40.46394569128303]
入力画像が与えられたシーングラフ生成は、視覚的に接地されたシーングラフを構築することにより、オブジェクトとその関係を明示的にモデル化することを目的としている。
本稿では,より厳密な重み付き下界を変分推論対象として用いた2重み付き重み付き構造学習法を提案する。
提案手法は,様々な人気シーングラフ生成ベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-06-22T20:00:25Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
本研究では,未知画像の後部分布を問合せ観測で近似する新しいフレームワークを開発する。
暗黙のノイズモデルと先行処理を処理し、データ生成プロセス(フォワード演算子)を組み込み、学習された再構成特性は異なるデータセット間で転送可能である。
論文 参考訳(メタデータ) (2021-10-22T10:02:48Z) - Wavelet Transform-assisted Adaptive Generative Modeling for Colorization [15.814591440291652]
本研究では,ウェーブレット領域におけるスコアベース生成モデルを利用した新しい手法を提案する。
ウェーブレット変換によるマルチスケールおよびマルチチャネル表現を利用することで,重畳されたウェーブレット係数成分から先行情報を学習する。
実験により, 提案モデルが着色品質, 特に着色性, 多様性に顕著な改善が認められた。
論文 参考訳(メタデータ) (2021-07-09T07:12:39Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。