論文の概要: Deepfake Representation with Multilinear Regression
- arxiv url: http://arxiv.org/abs/2108.06702v1
- Date: Sun, 15 Aug 2021 09:37:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 03:28:37.891439
- Title: Deepfake Representation with Multilinear Regression
- Title(参考訳): 多線形回帰によるディープフェイク表現
- Authors: Sara Abdali, M. Alex O. Vasilescu, Evangelos E. Papalexakis
- Abstract要約: 偽データと実データを表現するための線形回帰と多線形回帰を組み合わせた修正型マルチリニア(テンソル)手法を提案する。
修正されたマルチ線形(テンソル)アプローチでDeepfakesを表現し、SVM分類を奨励的な結果で実行することで、アプローチをテストする。
- 参考スコア(独自算出の注目度): 7.408609224570166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative neural network architectures such as GANs, may be used to generate
synthetic instances to compensate for the lack of real data. However, they may
be employed to create media that may cause social, political or economical
upheaval. One emerging media is "Deepfake".Techniques that can discriminate
between such media is indispensable. In this paper, we propose a modified
multilinear (tensor) method, a combination of linear and multilinear
regressions for representing fake and real data. We test our approach by
representing Deepfakes with our modified multilinear (tensor) approach and
perform SVM classification with encouraging results.
- Abstract(参考訳): GANのような生成ニューラルネットワークアーキテクチャは、実際のデータの欠如を補うために合成インスタンスを生成するために使われる。
しかし、社会的、政治的、経済的混乱を引き起こすようなメディアを作るために使われることもある。
一つの新興メディアは「ディープフェイク」であり、そのようなメディアを区別できる技術は不可欠である。
本稿では,偽データと実データを表すために,線形回帰と多線形回帰を組み合わせた修正多重線形(テンソル)法を提案する。
修正されたマルチ線形(テンソル)アプローチでDeepfakesを表現し、SVM分類を奨励的な結果で実行することで、アプローチをテストする。
関連論文リスト
- Flexible inference in heterogeneous and attributed multilayer networks [21.349513661012498]
我々は任意の種類の情報を持つ多層ネットワークで推論を行う確率的生成モデルを開発した。
インド農村部における社会支援ネットワークにおける様々なパターンを明らかにする能力を示す。
論文 参考訳(メタデータ) (2024-05-31T15:21:59Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
事前訓練されたコードのモデルは、コード理解と生成タスクに人気がある。
このようなモデルは大きい傾向があり、訓練データの総量を必要とする。
人工的に注入されたバグのある関数など、はるかに大きくてもより現実的なデータセットを持つモデルをトレーニングすることが一般的になった。
このようなデータで訓練されたモデルは、実際のプログラムでは性能が劣りながら、同様のデータでのみうまく機能する傾向にある。
論文 参考訳(メタデータ) (2023-11-02T01:51:43Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders [45.29194877564103]
本研究は、クラスラベルなどの半教師付き情報を付加できる非対称符号化復号プロセスを備えたチャートオートエンコーダを導入する。
このようなネットワークの近似力を議論し、周囲空間の次元ではなく、本質的にデータ多様体の内在次元に依存する境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T19:58:03Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - $\textit{latent}$-GLAT: Glancing at Latent Variables for Parallel Text
Generation [65.29170569821093]
並列テキスト生成は、ジェネレーション効率の成功により、広く注目を集めています。
本稿では,単語分類情報を取得するために,離散潜在変数を用いた$textitlatent$-GLATを提案する。
実験結果から,本手法は自己回帰モデルを用いることなく,強いベースラインを達成できることが示唆された。
論文 参考訳(メタデータ) (2022-04-05T07:34:12Z) - Deep Multimodal Transfer-Learned Regression in Data-Poor Domains [0.0]
画像と特徴データのマルチモーダル学習のためのDMTL-R(Deep Multimodal Transfer-Learned Regressor)を提案する。
我々のモデルは、少量のトレーニング画像データに基づいて、与えられたトレーニング済みCNN重みのセットを微調整することができる。
各種CNNアーキテクチャからの事前学習重みを用いた位相場シミュレーションマイクロ構造画像とそれに付随する物理特徴集合を用いた結果を提案する。
論文 参考訳(メタデータ) (2020-06-16T16:52:44Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。