論文の概要: Deep Multimodal Transfer-Learned Regression in Data-Poor Domains
- arxiv url: http://arxiv.org/abs/2006.09310v1
- Date: Tue, 16 Jun 2020 16:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:44:07.693431
- Title: Deep Multimodal Transfer-Learned Regression in Data-Poor Domains
- Title(参考訳): data-poorドメインにおけるディープマルチモーダル転送学習レグレッション
- Authors: Levi McClenny, Mulugeta Haile, Vahid Attari, Brian Sadler, Ulisses
Braga-Neto, Raymundo Arroyave
- Abstract要約: 画像と特徴データのマルチモーダル学習のためのDMTL-R(Deep Multimodal Transfer-Learned Regressor)を提案する。
我々のモデルは、少量のトレーニング画像データに基づいて、与えられたトレーニング済みCNN重みのセットを微調整することができる。
各種CNNアーキテクチャからの事前学習重みを用いた位相場シミュレーションマイクロ構造画像とそれに付随する物理特徴集合を用いた結果を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world applications of deep learning, estimation of a target may
rely on various types of input data modes, such as audio-video, image-text,
etc. This task can be further complicated by a lack of sufficient data. Here we
propose a Deep Multimodal Transfer-Learned Regressor (DMTL-R) for multimodal
learning of image and feature data in a deep regression architecture effective
at predicting target parameters in data-poor domains. Our model is capable of
fine-tuning a given set of pre-trained CNN weights on a small amount of
training image data, while simultaneously conditioning on feature information
from a complimentary data mode during network training, yielding more accurate
single-target or multi-target regression than can be achieved using the images
or the features alone. We present results using phase-field simulation
microstructure images with an accompanying set of physical features, using
pre-trained weights from various well-known CNN architectures, which
demonstrate the efficacy of the proposed multimodal approach.
- Abstract(参考訳): 多くの現実世界のディープラーニングアプリケーションでは、ターゲットの推定はオーディオビデオや画像テキストなど、さまざまな入力データモードに依存する可能性がある。
このタスクは十分なデータがないためにさらに複雑になる可能性がある。
本稿では,データポーア領域における対象パラメータの予測に有効である深層回帰アーキテクチャにおいて,画像と特徴データのマルチモーダル学習を行うための深層マルチモーダル転送型レグレッサ(dmtl-r)を提案する。
本モデルは、ネットワークトレーニング中の補足データモードからの特徴情報を同時に調整しながら、少量のトレーニング画像データに対して所定のcnn重みを微調整することができ、画像や特徴だけで達成できるよりも高精度な単一目標または多目標回帰を実現する。
そこで本研究では,様々なcnnアーキテクチャから事前学習した重みを用いて,物理特性を付加した位相場シミュレーション画像を用いて,マルチモーダル手法の有効性を示す。
関連論文リスト
- Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
視覚認識のためのマスク付き画像モデリング(MIM)手法のスケーリング能力に関する実証的研究を行った。
具体的には、Webで収集したCoyo-700Mデータセットを利用する。
我々のゴールは、データとモデルのサイズの異なるスケールでダウンストリームタスクのパフォーマンスがどのように変化するかを調べることです。
論文 参考訳(メタデータ) (2023-05-24T15:33:46Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
MSPモデルに基づいて情報を処理する階層構造として多グラフ畳み込みニューラルネットワーク(MGNN)を導入する。
また,MGNNにおけるフィルタ係数のトラクタブルな計算手法と,レイヤ間で転送される情報の次元性を低減するための低コストな手法を開発した。
論文 参考訳(メタデータ) (2022-10-28T17:00:50Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Multiresolution Convolutional Autoencoders [5.0169726108025445]
本稿では,3つの数学的アーキテクチャを統合し,活用する多分解能畳み込みオートエンコーダアーキテクチャを提案する。
基礎学習技術を適用して、以前のトレーニングステップから学んだ情報を、より大規模なネットワークに迅速に転送できるようにする。
合成例と実世界の空間データに関する数値実験により,性能向上を図示する。
論文 参考訳(メタデータ) (2020-04-10T08:31:59Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。