Evolutionary Algorithms in Approximate Computing: A Survey
- URL: http://arxiv.org/abs/2108.07000v1
- Date: Mon, 16 Aug 2021 10:17:26 GMT
- Title: Evolutionary Algorithms in Approximate Computing: A Survey
- Authors: Lukas Sekanina
- Abstract summary: This paper deals with evolutionary approximation as one of the popular approximation methods.
The paper provides the first survey of evolutionary approximation (EA)-based approaches applied in the context of approximate computing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, many design automation methods have been developed to
routinely create approximate implementations of circuits and programs that show
excellent trade-offs between the quality of output and required resources. This
paper deals with evolutionary approximation as one of the popular approximation
methods. The paper provides the first survey of evolutionary algorithm
(EA)-based approaches applied in the context of approximate computing. The
survey reveals that EAs are primarily applied as multi-objective optimizers. We
propose to divide these approaches into two main classes: (i) parameter
optimization in which the EA optimizes a vector of system parameters, and (ii)
synthesis and optimization in which EA is responsible for determining the
architecture and parameters of the resulting system. The evolutionary
approximation has been applied at all levels of design abstraction and in many
different applications. The neural architecture search enabling the automated
hardware-aware design of approximate deep neural networks was identified as a
newly emerging topic in this area.
Related papers
- Fast Genetic Algorithm for feature selection -- A qualitative approximation approach [5.279268784803583]
We propose a two-stage surrogate-assisted evolutionary approach to address the computational issues arising from using Genetic Algorithm (GA) for feature selection.
We show that CHCQX converges faster to feature subset solutions of significantly higher accuracy, particularly for large datasets with over 100K instances.
arXiv Detail & Related papers (2024-04-05T10:15:24Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using
Mathematical Programming [2.898055875927704]
We propose a data analysis-driven mathematical programming-based approach to synthesizing approximate operators for FPGAs.
Specifically, we formulate mixed integer quadratically constrained programs based on the results of correlation analysis of the characterization data.
Compared to traditional evolutionary algorithms-based optimization, we report up to 21% improvement in the hypervolume, for joint optimization of PPA and BEHAV.
arXiv Detail & Related papers (2023-09-23T18:23:54Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - First-Order Methods for Convex Optimization [2.578242050187029]
First-order methods have the potential to provide low accuracy solutions at low computational complexity.
We give complete proofs for various key results, and highlight the unifying aspects of several optimization algorithms.
arXiv Detail & Related papers (2021-01-04T13:03:38Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.