Change is Everywhere: Single-Temporal Supervised Object Change Detection
in Remote Sensing Imagery
- URL: http://arxiv.org/abs/2108.07002v3
- Date: Sat, 14 Oct 2023 03:18:11 GMT
- Title: Change is Everywhere: Single-Temporal Supervised Object Change Detection
in Remote Sensing Imagery
- Authors: Zhuo Zheng, Ailong Ma, Liangpei Zhang, Yanfei Zhong
- Abstract summary: We propose single-temporal supervised learning (STAR) for change detection from a new perspective.
We train a high-accuracy change detector only using textbfunpaired labeled images and generalize to real-world bitemporal images.
ChangeStar outperforms the baseline with a large margin under single-temporal supervision and achieves superior performance under bitemporal supervision.
- Score: 23.620965329033716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For high spatial resolution (HSR) remote sensing images, bitemporal
supervised learning always dominates change detection using many pairwise
labeled bitemporal images. However, it is very expensive and time-consuming to
pairwise label large-scale bitemporal HSR remote sensing images. In this paper,
we propose single-temporal supervised learning (STAR) for change detection from
a new perspective of exploiting object changes in unpaired images as
supervisory signals. STAR enables us to train a high-accuracy change detector
only using \textbf{unpaired} labeled images and generalize to real-world
bitemporal images. To evaluate the effectiveness of STAR, we design a simple
yet effective change detector called ChangeStar, which can reuse any deep
semantic segmentation architecture by the ChangeMixin module. The comprehensive
experimental results show that ChangeStar outperforms the baseline with a large
margin under single-temporal supervision and achieves superior performance
under bitemporal supervision. Code is available at
https://github.com/Z-Zheng/ChangeStar
Related papers
- Single-Temporal Supervised Learning for Universal Remote Sensing Change Detection [21.622442722863028]
We propose single-temporal supervised learning (STAR) for universal remote sensing change detection.
Star enables us to train a high-accuracy change detector only using unpaired labeled images.
ChangeStar2 achieves state-of-the-art performances on eight public remote sensing change detection datasets.
arXiv Detail & Related papers (2024-06-22T00:03:21Z) - Self-Supervised Learning for Real-World Super-Resolution from Dual and Multiple Zoomed Observations [61.448005005426666]
We consider two challenging issues in reference-based super-resolution (RefSR) for smartphone.
We propose a novel self-supervised learning approach for real-world RefSR from observations at dual and multiple camera zooms.
arXiv Detail & Related papers (2024-05-03T15:20:30Z) - Segment Any Change [64.23961453159454]
We propose a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions.
AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching.
We also propose a point query mechanism to enable AnyChange's zero-shot object-centric change detection capability.
arXiv Detail & Related papers (2024-02-02T07:17:39Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - Unsupervised CD in satellite image time series by contrastive learning
and feature tracking [15.148034487267635]
We propose a two-stage approach to unsupervised change detection in satellite image time-series using contrastive learning with feature tracking.
By deriving pseudo labels from pre-trained models and using feature tracking to propagate them among the image time-series, we improve the consistency of our pseudo labels and address the challenges of seasonal changes in long-term remote sensing image time-series.
arXiv Detail & Related papers (2023-04-22T11:19:19Z) - Self-Pair: Synthesizing Changes from Single Source for Object Change
Detection in Remote Sensing Imagery [6.586756080460231]
We train a change detector using two spatially unrelated images with corresponding semantic labels such as building.
We show that manipulating the source image as an after-image is crucial to the performance of change detection.
Our method outperforms existing methods based on single-temporal supervision.
arXiv Detail & Related papers (2022-12-20T13:26:42Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
We propose a semi-supervised CD model in which we formulate an unsupervised CD loss in addition to the supervised Cross-Entropy (CE) loss.
Experiments conducted on two publicly available CD datasets show that the proposed semi-supervised CD method can reach closer to the performance of supervised CD.
arXiv Detail & Related papers (2022-04-18T17:59:01Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
Unsupervised representation learning achieves promising performances in pre-training representations for object detectors.
This work proposes a simple yet effective representation learning method for object detection, named patch re-identification (Re-ID)
Our method significantly outperforms its counterparts on COCO in all settings, such as different training iterations and data percentages.
arXiv Detail & Related papers (2021-03-08T15:13:59Z) - Self-supervised Multisensor Change Detection [14.191073951237772]
We revisit multisensor analysis in context of self-supervised change detection in bi-temporal satellite images.
Recent development of self-supervised learning methods has shown that some of them can even work with only few images.
Motivated by this, in this work we propose a method for multi-sensor change detection using only the unlabeled target bi-temporal images.
arXiv Detail & Related papers (2021-02-12T12:31:10Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
Unsupervised contrastive learning achieves great success in learning image representations with CNN.
We present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches.
DetCo consistently outperforms supervised method by 1.6/1.2/1.0 AP on Mask RCNN-C4/FPN/RetinaNet with 1x schedule.
arXiv Detail & Related papers (2021-02-09T12:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.