論文の概要: AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities
- arxiv url: http://arxiv.org/abs/2108.07120v1
- Date: Mon, 16 Aug 2021 14:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 18:07:14.388480
- Title: AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities
- Title(参考訳): AIREX:未モニタリング都市における大気質推定のためのニューラルネットワークによるアプローチ
- Authors: Yuya Sasaki, Kei Harada, Shohei Yamasaki, Makoto Onizuka
- Abstract要約: 監視局は、継続的に空気の質に関する情報を取得するために設置されているが、すべての地域をカバーするわけではない。
既存の方法は、監視対象都市のみの空気質を推定することを目的としており、監視対象都市では空気質を推定しない。
本研究では,未モニタリング都市における大気質を正確に推定するためのニューラルネットワークベースのアプローチAIREXを提案する。
- 参考スコア(独自算出の注目度): 0.491574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban air pollution is a major environmental problem affecting human health
and quality of life. Monitoring stations have been established to continuously
obtain air quality information, but they do not cover all areas. Thus, there
are numerous methods for spatially fine-grained air quality inference. Since
existing methods aim to infer air quality of locations only in monitored
cities, they do not assume inferring air quality in unmonitored cities. In this
paper, we first study the air quality inference in unmonitored cities. To
accurately infer air quality in unmonitored cities, we propose a neural
network-based approach AIREX. The novelty of AIREX is employing a
mixture-of-experts approach, which is a machine learning technique based on the
divide-and-conquer principle, to learn correlations of air quality between
multiple cities. To further boost the performance, it employs attention
mechanisms to compute impacts of air quality inference from the monitored
cities to the locations in the unmonitored city. We show, through experiments
on a real-world air quality dataset, that AIREX achieves higher accuracy than
state-of-the-art methods.
- Abstract(参考訳): 都市大気汚染は、人間の健康と生活の質に影響を与える主要な環境問題である。
継続的に空気質情報を取得するために監視局が設置されているが、全ての地域をカバーするわけではない。
このように、空間的に微細な空気質推定法は数多く存在する。
既存の方法では、監視対象都市のみでの空気質の推測が目的であるため、監視対象都市では空気質の推測は行わない。
本稿ではまず,未モニタリング都市における大気質推定について検討する。
未モニタリング都市における空気質を正確に推定するために,ニューラルネットワークによるAIREX手法を提案する。
AIREXの斬新さは、複数の都市間での空気質の相関関係を学習するために、分割・コンカレント原理に基づく機械学習技術であるMix-of-expertsアプローチを採用している。
性能をさらに高めるため、監視対象都市から監視対象都市内の場所への空気質推定の影響を計算するために注意メカニズムを採用している。
実世界の空気質データセットの実験を通して、AIREXは最先端の手法よりも高い精度を達成することを示す。
関連論文リスト
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
都市部における空気質の向上は、公共団体の主な関心事の一つである。
この懸念は、大気の質と公衆衛生の間の証拠から生じる。
規制された駐車場サービスにおける動的価格の提案について述べる。
論文 参考訳(メタデータ) (2022-01-11T20:31:35Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
本稿では、コンピュータビジョンとパターン認識の観点から、人間中心の空中監視タスクの概要を概観する。
主な対象は、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される人間である。
論文 参考訳(メタデータ) (2022-01-09T20:13:27Z) - Using Machine Learning to Predict Air Quality Index in New Delhi [0.0]
各種汚染物質のレベルと大気質指標の予測には,SVRモデルを用いる。
このモデルは、二酸化炭素、一酸化炭素、二酸化窒素、粒子状物質2.5、地上レベルのオゾンなどの様々な汚染物質を、精度93.4%で予測する。
論文 参考訳(メタデータ) (2021-12-10T00:20:05Z) - AirSPEC: An IoT-empowered Air Quality Monitoring System integrated with
a Machine Learning Framework to Detect and Predict defined Air Quality
parameters [0.0]
機械学習モデルにより実装が容易で、セマンティックに配布され、権限を与える新しいモノのインターネットフレームワークが提案されている。
提案システムは,一次センサデータを処理,可視化,保存するNodeREDダッシュボードを備えている。
ダッシュボードは、時間的および地理空間的な空気質予測を得るために、機械学習モデルと統合されている。
論文 参考訳(メタデータ) (2021-11-28T12:13:30Z) - HighAir: A Hierarchical Graph Neural Network-Based Air Quality
Forecasting Method [8.86417830514213]
HighAirは階層型グラフニューラルネットワークに基づく空気質予測手法である。
都市レベルのグラフと駅レベルのグラフを階層的な観点から構築する。
ヤンツェ川デルタ都市群のデータセット上で、HighAirと最新の空気品質予測方法を比較します。
論文 参考訳(メタデータ) (2021-01-12T02:31:14Z) - Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks [44.34236994440102]
本稿では,複数対数連続グラフニューラルネットワーク(MasterGNN)を共同空気質と天気予報のために提案する。
具体的には,大気質と気象モニタリングステーション間の不均一な自己時間相関をモデル化するグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-30T04:42:03Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z) - AiR -- An Augmented Reality Application for Visualizing Air Pollution [5.564705758320338]
AiRは、CPCBが測定した空気質を、ユーザーのGPSによって検出された局地性、またはユーザの選択した局地性において考慮し、その局地性に存在する様々な大気汚染物質を可視化する。
AiRはまた、異なる汚染物質、ソース、およびそれらが健康に与える影響について、対話的に認識する。
論文 参考訳(メタデータ) (2020-06-03T10:03:47Z) - AirRL: A Reinforcement Learning Approach to Urban Air Quality Inference [7.238981927352622]
都市大気汚染は公衆衛生を脅かす主要な環境問題となっている。
課題の1つは、空気質推論のためのいくつかの関連するステーションを効果的に選択する方法である。
都市大気質推定のための強化学習に基づく新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-03-27T02:04:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。