AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
- URL: http://arxiv.org/abs/2501.13141v1
- Date: Wed, 22 Jan 2025 14:32:20 GMT
- Title: AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
- Authors: Qiongyan Wang, Yutong Xia, Siru ZHong, Weichuang Li, Yuankai Wu, Shifen Cheng, Junbo Zhang, Yu Zheng, Yuxuan Liang,
- Abstract summary: We introduce emphAirRadar, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations.
By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions.
We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China.
- Score: 27.30426866654955
- License:
- Abstract: Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.
Related papers
- SAT-CEP-monitor: An air quality monitoring software architecture
combining complex event processing with satellite remote sensing [2.962390297307338]
Urban areas are the most affected by the degradation of air quality caused by anthropogenic gas emissions.
We propose a software architecture that efficiently combines complex event processing with remote sensing data from various satellite sensors to monitor air quality in NRT.
arXiv Detail & Related papers (2024-01-29T17:45:23Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality.
We introduce a data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements.
This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution.
arXiv Detail & Related papers (2024-01-16T18:03:07Z) - Gaussian Processes for Monitoring Air-Quality in Kampala [3.173497841606415]
We investigate the use of Gaussian Processes for nowcasting the current air-pollution in places where there are no sensors and forecasting the air-pollution in the future at the sensor locations.
We focus on the city of Kampala in Uganda, using data from AirQo's network of sensors.
arXiv Detail & Related papers (2023-11-28T09:25:23Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - AirFormer: Predicting Nationwide Air Quality in China with Transformers [43.48965814702661]
AirFormer is a novel Transformer architecture to collectively predict nationwide air quality in China.
AirFormer reduces prediction errors by 5%8% on 72-hour future predictions.
arXiv Detail & Related papers (2022-11-29T07:22:49Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - AIREX: Neural Network-based Approach for Air Quality Inference in
Unmonitored Cities [0.491574468325115]
Monitoring stations have been established to continuously obtain air quality information, but they do not cover all areas.
Existing methods aim to infer air quality of locations only in monitored cities, they do not assume inferring air quality in unmonitored cities.
We propose a neural network-based approach AIREX to accurately infer air quality in unmonitored cities.
arXiv Detail & Related papers (2021-08-16T14:41:14Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - AirRL: A Reinforcement Learning Approach to Urban Air Quality Inference [7.238981927352622]
Urban air pollution has become a major environmental problem that threatens public health.
One of the challenges is how to effectively select some relevant stations for air quality inference.
We propose a novel model based on reinforcement learning for urban air quality inference.
arXiv Detail & Related papers (2020-03-27T02:04:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.