RNN-Based Models for Predicting Seizure Onset in Epileptic Patients
- URL: http://arxiv.org/abs/2501.16334v1
- Date: Tue, 24 Dec 2024 08:05:01 GMT
- Title: RNN-Based Models for Predicting Seizure Onset in Epileptic Patients
- Authors: Mathan Kumar Mounagurusamy, Thiyagarajan V S, Abdur Rahman, Shravan Chandak, D. Balaji, Venkateswara Rao Jallepalli,
- Abstract summary: The accuracy and false alarm rates of existing systems are often compromised by their dependence on static thresholds and basic Electroencephalogram (EEG) properties.<n>A novel Recurrent Neural Network (RNN)-based method for seizure start prediction is proposed in the article to overcome these limitations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early management and better clinical outcomes for epileptic patients depend on seizure prediction. The accuracy and false alarm rates of existing systems are often compromised by their dependence on static thresholds and basic Electroencephalogram (EEG) properties. A novel Recurrent Neural Network (RNN)-based method for seizure start prediction is proposed in the article to overcome these limitations. As opposed to conventional techniques, the proposed system makes use of Long Short-Term Memory (LSTM) networks to extract temporal correlations from unprocessed EEG data. It enables the system to adapt dynamically to the unique EEG patterns of each patient, improving prediction accuracy. The methodology of the system comprises thorough data collecting, preprocessing, and LSTM-based feature extraction. Annotated EEG datasets are then used for model training and validation. Results show a considerable reduction in false alarm rates (average of 6.8%) and an improvement in prediction accuracy (90.2% sensitivity, 88.9% specificity, and AUC-ROC of 93). Additionally, computational efficiency is significantly higher than that of existing systems (12 ms processing time, 45 MB memory consumption). About improving seizure prediction reliability, these results demonstrate the effectiveness of the proposed RNN-based strategy, opening up possibilities for its practical application to improve epilepsy treatment.
Related papers
- A Multi-Modal Non-Invasive Deep Learning Framework for Progressive Prediction of Seizures [10.250114060511134]
This paper introduces an innovative framework designed for progressive (granular in time to onset) prediction of seizures.
Our framework employs advanced Deep Learning (DL) techniques and uses personalized data from a network of non-invasive electroencephalogram (EEG) and electrocardiogram (ECG) sensors.
Our model achieves 95% sensitivity, 98% specificity, and 97% accuracy, averaged among 29 patients.
arXiv Detail & Related papers (2024-10-26T04:06:09Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse
Pre-Processing Techniques and Machine Learning Models [0.0]
We present a comparative analysis of five machine learning models for the prediction of epileptic seizures using EEG data.
The results of our analysis demonstrate the performance of each model in terms of accuracy.
The ET model exhibited the best performance with an accuracy of 99.29%.
arXiv Detail & Related papers (2023-08-06T08:50:08Z) - Machine Learning Techniques for Predicting the Short-Term Outcome of
Resective Surgery in Lesional-Drug Resistance Epilepsy [1.759008116536278]
Seven dif-ferent categorization algorithms were used to analyze the data.
The support vector machine (SVM) with the linear kernel yielded 76.1% in terms of accuracy.
arXiv Detail & Related papers (2023-02-10T13:04:47Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - Patient-Specific Seizure Prediction Using Single Seizure
Electroencephalography Recording [16.395309518579914]
We propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG.
Our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.
arXiv Detail & Related papers (2020-11-14T03:45:17Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.