論文の概要: Prediction of Students performance with Artificial Neural Network using
Demographic Traits
- arxiv url: http://arxiv.org/abs/2108.07717v1
- Date: Sun, 8 Aug 2021 11:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-22 14:39:19.674275
- Title: Prediction of Students performance with Artificial Neural Network using
Demographic Traits
- Title(参考訳): 人口動態を用いたニューラルネットワークによる学生のパフォーマンス予測
- Authors: Adeniyi Jide Kehinde, Abidemi Emmanuel Adeniyi, Roseline Oluwaseun
Ogundokun, Himanshu Gupta, Sanjay Misra
- Abstract要約: 本研究は, ニュートラルネットワークを用いた学生の成績予測システムを開発することを目的とする。
モデルは入力として選択された変数に基づいて開発された。
精度は92.3%を超え、ニューラルネットワークの有効性を示した。
- 参考スコア(独自算出の注目度): 2.7636476571082373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many researchers have studied student academic performance in supervised and
unsupervised learning using numerous data mining techniques. Neural networks
often need a greater collection of observations to achieve enough predictive
ability. Due to the increase in the rate of poor graduates, it is necessary to
design a system that helps to reduce this menace as well as reduce the
incidence of students having to repeat due to poor performance or having to
drop out of school altogether in the middle of the pursuit of their career. It
is therefore necessary to study each one as well as their advantages and
disadvantages, so as to determine which is more efficient in and in what case
one should be preferred over the other. The study aims to develop a system to
predict student performance with Artificial Neutral Network using the student
demographic traits so as to assist the university in selecting candidates
(students) with a high prediction of success for admission using previous
academic records of students granted admissions which will eventually lead to
quality graduates of the institution. The model was developed based on certain
selected variables as the input. It achieved an accuracy of over 92.3 percent,
showing Artificial Neural Network potential effectiveness as a predictive tool
and a selection criterion for candidates seeking admission to a university.
- Abstract(参考訳): 多くの研究者が、多数のデータマイニング技術を用いて教師なし・教師なし学習における学生の学業成績を研究している。
ニューラルネットワークは、十分な予測能力を達成するために、より大きな観測の収集を必要とすることが多い。
卒業率の低さから、成績の悪さや、キャリアの追求の途中で学校を中退することによる繰り返しの頻度を減らすとともに、この脅威を減らすのに役立つシステムを設計する必要がある。
したがって、どちらがより効率的か、どの場合にどちらが好まれるかを判断するために、それぞれの利点と欠点を同時に研究する必要がある。
本研究は,学生層特性を用いた人工ニュートラルネットワークを用いた学生の成績予測システムを開発することを目的として,大学が候補者(学生)を選定する際の支援を行う。
モデルは、選択された変数を入力として開発した。
精度は92.3%を超え、予測ツールとしてのニューラルネットワークの有効性と、大学への入学を求める候補者の選択基準を示している。
関連論文リスト
- Beyond human subjectivity and error: a novel AI grading system [67.410870290301]
オープンエンドの質問の格付けは、教育における高い努力と高いインパクトの課題である。
AI技術の最近のブレークスルーは、このような自動化を促進するかもしれないが、大規模に実証されていない。
本稿では,新しい自動短解階調システム(ASAG)を提案する。
論文 参考訳(メタデータ) (2024-05-07T13:49:59Z) - Temporal and Between-Group Variability in College Dropout Prediction [0.0]
本研究では,機械学習モデルの寄与要因と予測性能を体系的に評価する。
最終年度末の降雨予測は,ランダムフォレストモデルによる入園時よりも20%高い値を示した。
学生集団間の多様性に関して、大学GPAは、伝統的に不利な背景を持つ学生にとって、仲間よりも予測的価値が高い。
論文 参考訳(メタデータ) (2024-01-12T10:43:55Z) - Students Success Modeling: Most Important Factors [0.47829670123819784]
モデルは、卒業する確率の高い生徒、転校する確率の高い生徒、退学して高等教育を終了させる確率の高い生徒を識別する。
実験の結果,初等期において,大学生とリスクの高い学生の区別が合理的に達成できることが示唆された。
このモデルは、学校に3年間滞在する学生の運命を著しく予測している。
論文 参考訳(メタデータ) (2023-09-06T19:23:10Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
本研究では,データマイニング手法の分類とアルゴリズムのための決定木を用いる。
新たに発見された予測モデルを利用することで、生徒の現在のコースを合格する確率の予測は、0.7619の精度、0.8333の精度、0.8823のリコール、0.8571のf1のスコアを与える。
論文 参考訳(メタデータ) (2023-04-12T01:57:08Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Personalized Student Attribute Inference [0.0]
この作業は、障害のある生徒を自動的に検出できるシステムを作ることだ。
文献で広く使われているナイーブなアプローチは、データセットで利用可能な属性(等級など)と、パーソナライズされた学生属性推論(IPSA)というパーソナライズされたアプローチを比較した。
論文 参考訳(メタデータ) (2022-12-26T23:00:28Z) - A Few-shot Learning Graph Multi-Trajectory Evolution Network for
Forecasting Multimodal Baby Connectivity Development from a Baseline
Timepoint [53.73316520733503]
本稿では,教師-学生パラダイムを取り入れたグラフ多目的進化ネットワーク(GmTE-Net)を提案する。
これは、脳グラフ多軌道成長予測に適した最初の教師学生アーキテクチャである。
論文 参考訳(メタデータ) (2021-10-06T08:26:57Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
本稿では,対話型オンライン質問プールにおいて,より優れた生徒のパフォーマンス予測を実現するために,グラフニューラルネットワーク(GNN)を用いた新しいアプローチを提案する。
具体的には,学生のインタラクションを用いた学生と質問の関係をモデル化し,学生のインタラクション・クエストネットワークを構築する。
1631の質問に対して4000人以上の学生の問題解決過程において生成した104,113個のマウス軌跡からなる実世界のデータセットに対するアプローチの有効性を評価した。
論文 参考訳(メタデータ) (2020-08-04T14:55:32Z) - Graduate Employment Prediction with Bias [44.38256197478875]
大学生への就職の失敗は、飲酒や自殺などの深刻な社会的結果を引き起こす可能性がある。
偏見を考慮しつつ,学生の就業状況を予測する枠組み,すなわちMAYAを開発する。
論文 参考訳(メタデータ) (2019-12-27T07:30:28Z) - Academic Performance Estimation with Attention-based Graph Convolutional
Networks [17.985752744098267]
学生の過去のデータから、学生のパフォーマンス予測の課題は、将来のコースにおける生徒の成績を予測することである。
学生のパフォーマンス予測の伝統的な方法は、通常、複数のコース間の基礎となる関係を無視する。
本稿では,学生のパフォーマンス予測のための新しい注目型グラフ畳み込みネットワークモデルを提案する。
論文 参考訳(メタデータ) (2019-12-26T23:11:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。