Contrastive Identification of Covariate Shift in Image Data
- URL: http://arxiv.org/abs/2108.08000v2
- Date: Thu, 19 Aug 2021 05:00:33 GMT
- Title: Contrastive Identification of Covariate Shift in Image Data
- Authors: Matthew L. Olson, Thuy-Vy Nguyen, Gaurav Dixit, Neale Ratzlaff,
Weng-Keen Wong, and Minsuk Kahng
- Abstract summary: We design and evaluate a new visual interface that facilitates the comparison of the local distributions of training and test data.
Our results indicate that the latent representation of our density ratio model, combined with a nearest-neighbor comparison, is the most effective.
- Score: 9.24377095933225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying covariate shift is crucial for making machine learning systems
robust in the real world and for detecting training data biases that are not
reflected in test data. However, detecting covariate shift is challenging,
especially when the data consists of high-dimensional images, and when multiple
types of localized covariate shift affect different subspaces of the data.
Although automated techniques can be used to detect the existence of covariate
shift, our goal is to help human users characterize the extent of covariate
shift in large image datasets with interfaces that seamlessly integrate
information obtained from the detection algorithms. In this paper, we design
and evaluate a new visual interface that facilitates the comparison of the
local distributions of training and test data. We conduct a quantitative user
study on multi-attribute facial data to compare two different learned
low-dimensional latent representations (pretrained ImageNet CNN vs. density
ratio) and two user analytic workflows (nearest-neighbor vs.
cluster-to-cluster). Our results indicate that the latent representation of our
density ratio model, combined with a nearest-neighbor comparison, is the most
effective at helping humans identify covariate shift.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Automatic dataset shift identification to support root cause analysis of AI performance drift [13.996602963045387]
Shifts in data distribution can substantially harm the performance of clinical AI models.
We propose the first unsupervised dataset shift identification framework.
We report promising results for the proposed framework on five types of real-world dataset shifts.
arXiv Detail & Related papers (2024-11-12T17:09:20Z) - Can Your Generative Model Detect Out-of-Distribution Covariate Shift? [2.0144831048903566]
We propose a novel method for detecting Out-of-Distribution (OOD) sensory data using conditional Normalizing Flows (cNFs)
Our results on CIFAR10 vs. CIFAR10-C and ImageNet200 vs. ImageNet200-C demonstrate the effectiveness of the method.
arXiv Detail & Related papers (2024-09-04T19:27:56Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
We propose a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL)
We introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features.
Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-02-25T04:48:11Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Vector-Based Data Improves Left-Right Eye-Tracking Classifier
Performance After a Covariate Distributional Shift [0.0]
We propose a fine-grain data approach for EEG-ET data collection in order to create more robust benchmarking.
We train machine learning models utilizing both coarse-grain and fine-grain data and compare their accuracies when tested on data of similar/different distributional patterns.
Results showed that models trained on fine-grain, vector-based data were less susceptible to distributional shifts than models trained on coarse-grain, binary-classified data.
arXiv Detail & Related papers (2022-07-31T16:27:50Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
Current algorithms suffer from insufficient training samples and category imbalance within datasets.
We propose an efficient and effective data augmentation method called DecAug for HOI detection.
Experiments show that our method brings up to 3.3 mAP and 1.6 mAP improvements on V-COCO and HICODET dataset.
arXiv Detail & Related papers (2020-10-02T13:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.