論文の概要: Variational Graph Normalized Auto-Encoders
- arxiv url: http://arxiv.org/abs/2108.08046v1
- Date: Wed, 18 Aug 2021 08:56:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-19 20:48:02.783128
- Title: Variational Graph Normalized Auto-Encoders
- Title(参考訳): 変分グラフ正規化オートエンコーダ
- Authors: Seong Jin Ahn, Myoung Ho Kim
- Abstract要約: グラフオートエンコーダ(GAE)と変分グラフオートエンコーダ(VGAE)は,次数0のノードが関与している場合,リンク予測においてうまく機能しないことを示す。
我々は,GAE/VGAEが,コンテンツの特徴に関係なく,孤立ノードの埋め込みをゼロに近いものにすることを発見した。
本稿では、$L$正規化を利用して孤立ノードに対するより良い埋め込みを導出する新しい変分グラフ正規化オートエンコーダ(VGNAE)を提案する。
- 参考スコア(独自算出の注目度): 4.416484585765027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction is one of the key problems for graph-structured data. With
the advancement of graph neural networks, graph autoencoders (GAEs) and
variational graph autoencoders (VGAEs) have been proposed to learn graph
embeddings in an unsupervised way. It has been shown that these methods are
effective for link prediction tasks. However, they do not work well in link
predictions when a node whose degree is zero (i.g., isolated node) is involved.
We have found that GAEs/VGAEs make embeddings of isolated nodes close to zero
regardless of their content features. In this paper, we propose a novel
Variational Graph Normalized AutoEncoder (VGNAE) that utilize
$L_2$-normalization to derive better embeddings for isolated nodes. We show
that our VGNAEs outperform the existing state-of-the-art models for link
prediction tasks. The code is available at
https://github.com/SeongJinAhn/VGNAE.
- Abstract(参考訳): グラフ構造化データの鍵となる問題はリンク予測である。
グラフニューラルネットワークの進歩に伴い、グラフオートエンコーダ(GAE)と変分グラフオートエンコーダ(VGAE)が、教師なしの方法でグラフ埋め込みを学ぶために提案されている。
これらの手法はリンク予測タスクに有効であることが示されている。
しかし、度数がゼロであるノード(例えば孤立ノード)が関与している場合、リンク予測ではうまく動作しない。
我々は,GAE/VGAEが,コンテンツの特徴に関係なく,孤立ノードの埋め込みをゼロに近いものにすることを発見した。
本稿では,$L_2$正規化を利用して孤立ノードに対するより良い埋め込みを導出する新しい変分グラフ正規化オートエンコーダ(VGNAE)を提案する。
我々のVGNAEはリンク予測タスクにおける既存の最先端モデルよりも優れていることを示す。
コードはhttps://github.com/SeongJinAhn/VGNAEで入手できる。
関連論文リスト
- ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Learning on Graphs with Out-of-Distribution Nodes [33.141867473074264]
グラフニューラルネットワーク(GNN)は、グラフ上で予測タスクを実行するための最先端モデルである。
この研究は、分散ノードによるグラフ学習の問題を定義する。
本稿では,異なるノード間の相互作用を明示的にモデル化する新しいGNNモデルであるOut-of-Distribution Graph Attention Network (OODGAT)を提案する。
論文 参考訳(メタデータ) (2023-08-13T08:10:23Z) - Self-attention Dual Embedding for Graphs with Heterophily [6.803108335002346]
多くの実世界のグラフはヘテロ親和性があり、標準のGNNを用いた分類精度ははるかに低い。
ヘテロ親和性グラフとホモ親和性グラフの両方に有効である新しいGNNを設計する。
我々は,数千から数百万のノードを含む実世界のグラフ上でアルゴリズムを評価し,最先端の結果が得られたことを示す。
論文 参考訳(メタデータ) (2023-05-28T09:38:28Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Source Free Unsupervised Graph Domain Adaptation [60.901775859601685]
Unsupervised Graph Domain Adaptation (UGDA) はノード分類のラベル付けコストを削減するための実用的価値を示している。
既存のUGDAメソッドの多くは、ソースドメインのラベル付きグラフに大きく依存している。
現実のシナリオでは、ソースグラフはプライバシーの問題のためにアクセスできない。
我々は、Source Free Unsupervised Graph Domain Adaptation (SFUGDA) という新しいシナリオを提案する。
論文 参考訳(メタデータ) (2021-12-02T03:18:18Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - A comparative study of similarity-based and GNN-based link prediction
approaches [1.0441880303257467]
グラフニューラルネットワーク(GNN)は、グラフ内のリンク予測タスクに使用できるグラフから隠れた特徴を学習することができる。
本稿では、同次グラフの領域における類似性とGNNに基づくリンク予測手法について検討する。
論文 参考訳(メタデータ) (2020-08-20T10:41:53Z) - Graph Deconvolutional Generation [3.5138314002170192]
我々は、Erdos-Renyiランダムグラフモデルの現代の等価性、すなわちグラフ変分オートエンコーダ(GVAE)に焦点を当てる。
GVAEは、トレーニング分布のマッチングが困難であり、高価なグラフマッチング手順に依存している。
我々は、GVAEのエンコーダとデコーダにメッセージパッシングニューラルネットワークを構築することにより、このモデルのクラスを改善した。
論文 参考訳(メタデータ) (2020-02-14T04:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。