ME-PCN: Point Completion Conditioned on Mask Emptiness
- URL: http://arxiv.org/abs/2108.08187v1
- Date: Wed, 18 Aug 2021 15:02:27 GMT
- Title: ME-PCN: Point Completion Conditioned on Mask Emptiness
- Authors: Bingchen Gong, Yinyu Nie, Yiqun Lin, Xiaoguang Han, Yizhou Yu
- Abstract summary: Main-stream methods predict missing shapes by decoding a global feature learned from the input point cloud.
We present ME-PCN, a point completion network that leverages emptiness' in 3D shape space.
- Score: 50.414383063838336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point completion refers to completing the missing geometries of an object
from incomplete observations. Main-stream methods predict the missing shapes by
decoding a global feature learned from the input point cloud, which often leads
to deficient results in preserving topology consistency and surface details. In
this work, we present ME-PCN, a point completion network that leverages
`emptiness' in 3D shape space. Given a single depth scan, previous methods
often encode the occupied partial shapes while ignoring the empty regions (e.g.
holes) in depth maps. In contrast, we argue that these `emptiness' clues
indicate shape boundaries that can be used to improve topology representation
and detail granularity on surfaces. Specifically, our ME-PCN encodes both the
occupied point cloud and the neighboring `empty points'. It estimates
coarse-grained but complete and reasonable surface points in the first stage,
followed by a refinement stage to produce fine-grained surface details.
Comprehensive experiments verify that our ME-PCN presents better qualitative
and quantitative performance against the state-of-the-art. Besides, we further
prove that our `emptiness' design is lightweight and easy to embed in existing
methods, which shows consistent effectiveness in improving the CD and EMD
scores.
Related papers
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
We propose a novel approach to point cloud completion task called Point-PC.
Point-PC uses a memory network to retrieve shape priors and designs a causal inference model to filter missing shape information.
Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-28T16:33:35Z) - LAKe-Net: Topology-Aware Point Cloud Completion by Localizing Aligned
Keypoints [35.82520172874995]
LAKe-Net is a novel point cloud completion model by localizing aligned keypoints.
A new type of skeleton, named Surface-skeleton, is generated from keypoints based on geometric priors.
Experimental results show that our method achieves the state-of-the-art performance on point cloud completion.
arXiv Detail & Related papers (2022-03-31T03:14:48Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - Skeleton-bridged Point Completion: From Global Inference to Local
Adjustment [48.2757171993437]
We propose a skeleton-bridged point completion network (SK-PCN) for shape completion.
Given a partial scan, our method first predicts its 3D skeleton to obtain the global structure.
We decouple the shape completion into structure estimation and surface reconstruction, which eases the learning difficulty.
arXiv Detail & Related papers (2020-10-14T22:49:30Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.