Position-aware Guided Point Cloud Completion with CLIP Model
- URL: http://arxiv.org/abs/2412.08271v1
- Date: Wed, 11 Dec 2024 10:43:11 GMT
- Title: Position-aware Guided Point Cloud Completion with CLIP Model
- Authors: Feng Zhou, Qi Zhang, Ju Dai, Lei Li, Qing Fan, Junliang Xing,
- Abstract summary: We propose a rapid and efficient method to expand an unimodal framework into a multimodal framework.
This approach incorporates a position-aware module designed to enhance the spatial information of the missing parts.
In addition, we establish a Point-Text-Image triplet corpus PCI-TI and MVP-TI based on the existing unimodal point cloud completion dataset.
- Score: 25.084811702682778
- License:
- Abstract: Point cloud completion aims to recover partial geometric and topological shapes caused by equipment defects or limited viewpoints. Current methods either solely rely on the 3D coordinates of the point cloud to complete it or incorporate additional images with well-calibrated intrinsic parameters to guide the geometric estimation of the missing parts. Although these methods have achieved excellent performance by directly predicting the location of complete points, the extracted features lack fine-grained information regarding the location of the missing area. To address this issue, we propose a rapid and efficient method to expand an unimodal framework into a multimodal framework. This approach incorporates a position-aware module designed to enhance the spatial information of the missing parts through a weighted map learning mechanism. In addition, we establish a Point-Text-Image triplet corpus PCI-TI and MVP-TI based on the existing unimodal point cloud completion dataset and use the pre-trained vision-language model CLIP to provide richer detail information for 3D shapes, thereby enhancing performance. Extensive quantitative and qualitative experiments demonstrate that our method outperforms state-of-the-art point cloud completion methods.
Related papers
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - FASTC: A Fast Attentional Framework for Semantic Traversability Classification Using Point Cloud [7.711666704468952]
We address the problem of traversability assessment using point clouds.
We propose a pillar feature extraction module that utilizes PointNet to capture features from point clouds organized in vertical volume.
We then propose a newtemporal attention module to fuse multi-frame information, which can properly handle the varying density problem of LIDAR point clouds.
arXiv Detail & Related papers (2024-06-24T12:01:55Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
We propose a novel approach to point cloud completion task called Point-PC.
Point-PC uses a memory network to retrieve shape priors and designs a causal inference model to filter missing shape information.
Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-28T16:33:35Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Prototype-Aware Heterogeneous Task for Point Cloud Completion [35.47134205562422]
Point cloud completion aims at recovering original shape information from partial point clouds.
Existing methods usually succeed in completion for standard shape, while failing to generate local details of point clouds for some non-standard shapes.
In this work, we design an effective way to distinguish standard/non-standard shapes with the help of intra-class shape representation.
arXiv Detail & Related papers (2022-09-05T02:43:06Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - ABD-Net: Attention Based Decomposition Network for 3D Point Cloud
Decomposition [1.3999481573773074]
We propose Attention Based Decomposition Network (ABD-Net) for point cloud decomposition.
We show improved performance of 3D object classification using attention features based on primitive shapes in point clouds.
arXiv Detail & Related papers (2021-07-09T08:39:30Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.