論文の概要: Towards Robust Human Trajectory Prediction in Raw Videos
- arxiv url: http://arxiv.org/abs/2108.08259v1
- Date: Wed, 18 Aug 2021 17:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-19 15:26:10.646406
- Title: Towards Robust Human Trajectory Prediction in Raw Videos
- Title(参考訳): 生ビデオにおけるロバストな人間の軌道予測に向けて
- Authors: Rui Yu and Zihan Zhou
- Abstract要約: 生ビデオにおける人間の軌道予測の問題について検討する。
予測精度は,種々のトラッキングエラーの影響を受けやすいことを示す。
本稿では,予測整合性を時間とともに強制することにより,トラッキング障害を修正するための簡易かつ効果的な手法を提案する。
- 参考スコア(独自算出の注目度): 8.301214274565819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human trajectory prediction has received increased attention lately due to
its importance in applications such as autonomous vehicles and indoor robots.
However, most existing methods make predictions based on human-labeled
trajectories and ignore the errors and noises in detection and tracking. In
this paper, we study the problem of human trajectory forecasting in raw videos,
and show that the prediction accuracy can be severely affected by various types
of tracking errors. Accordingly, we propose a simple yet effective strategy to
correct the tracking failures by enforcing prediction consistency over time.
The proposed "re-tracking" algorithm can be applied to any existing tracking
and prediction pipelines. Experiments on public benchmark datasets demonstrate
that the proposed method can improve both tracking and prediction performance
in challenging real-world scenarios. The code and data are available at
https://git.io/retracking-prediction.
- Abstract(参考訳): 近年,自律走行車や屋内ロボットなどの応用において,人間の軌道予測の重要性が増している。
しかし、既存のほとんどの手法は、人間のラベル付き軌道に基づいて予測を行い、検出と追跡の誤りやノイズを無視する。
本稿では,生映像における人間の軌跡予測の問題点について検討し,その予測精度が各種の追跡誤差の影響を受けやすいことを示す。
そこで本研究では,予測一貫性を経時的に強制することにより,追跡障害を是正する簡易かつ効果的な手法を提案する。
提案する"re-tracking"アルゴリズムは,既存のトラッキングおよび予測パイプラインに適用可能である。
公開ベンチマークデータセットの実験では、提案手法が現実のシナリオに挑戦する際のトラッキングと予測性能を改善することが示されている。
コードとデータはhttps://git.io/retracking-predictionで入手できる。
関連論文リスト
- Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking [7.9449756510822915]
TrajImputeは、観測された軌道の座標をシミュレートする歩行者軌道予測データセットである。
本研究では,欠落した座標を再構築するためのいくつかの計算手法について検討し,歩行者軌道の計算のためのベンチマークを行う。
本データセットは,今後の歩行者軌跡予測研究の基盤となる資料を提供する。
論文 参考訳(メタデータ) (2024-10-31T19:42:42Z) - Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
軌道予測は、自動運転車の周囲の障害物の動きを記述する。
本稿では,自律走行車における軌道予測におけるアウト・オブ・ディストリビューションのリアルタイム認識を確立することを目的とする。
提案手法は軽量であり, 軌道予測推定時にいつでもアウト・オブ・ディストリビューションの発生を処理できる。
論文 参考訳(メタデータ) (2024-09-25T18:43:58Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Adaptive Human Trajectory Prediction via Latent Corridors [49.13061580045407]
シーン固有の適応軌道予測の問題を定式化する。
本稿では,潜伏回廊と呼ばれる即時チューニングにインスパイアされた新しい適応手法を提案する。
0.1%の追加モデルパラメータでは、MOTシンスシミュレーションデータの改善が23.9%、MOTおよびワイルドトラックにおけるADEが16.4%となる。
論文 参考訳(メタデータ) (2023-12-11T18:59:12Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction [13.466380808630188]
歴史的軌跡に基づく複数経路の予測モデルを提案する。
提案手法は,空間情報を利用するとともに,時間的に矛盾した軌道を補正することができる。
実験により,提案手法は,複数未来予測の最先端性能と,単一未来予測の競合結果が得られることを示した。
論文 参考訳(メタデータ) (2022-06-12T10:25:12Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
物体検出と追跡から得られる軌道は、必然的にうるさい。
本稿では, 明示的に形成された軌道に依存することなく, 直接検出結果に基づく軌道予測器を提案する。
論文 参考訳(メタデータ) (2022-02-03T09:09:56Z) - MTP: Multi-Hypothesis Tracking and Prediction for Reduced Error
Propagation [39.41917241231786]
本稿では,トラッキングモジュールと予測モジュールの結合に着目し,カスケードエラーの問題に対処する。
最先端の追跡・予測ツールを用いて,追跡による誤差が予測性能に与える影響を総合的に評価した。
このフレームワークは、nuScenesデータセット上で標準の単一仮説追跡予測パイプラインを最大34.2%改善する。
論文 参考訳(メタデータ) (2021-10-18T17:30:59Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。