論文の概要: Retrieval and Localization with Observation Constraints
- arxiv url: http://arxiv.org/abs/2108.08516v1
- Date: Thu, 19 Aug 2021 06:14:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-20 14:20:21.987820
- Title: Retrieval and Localization with Observation Constraints
- Title(参考訳): 観測制約による検索と位置決め
- Authors: Yuhao Zhou, Huanhuan Fan, Shuang Gao, Yuchen Yang, Xudong Zhang,
Jijunnan Li, Yandong Guo
- Abstract要約: RLOCSと呼ばれる視覚的再局在化手法を提案する。
画像検索、意味整合性、幾何学的検証を組み合わせて正確な推定を行う。
本手法は, ローカライゼーションベンチマークにおいて多くの性能向上を実現している。
- 参考スコア(独自算出の注目度): 12.010135672015704
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate visual re-localization is very critical to many artificial
intelligence applications, such as augmented reality, virtual reality, robotics
and autonomous driving. To accomplish this task, we propose an integrated
visual re-localization method called RLOCS by combining image retrieval,
semantic consistency and geometry verification to achieve accurate estimations.
The localization pipeline is designed as a coarse-to-fine paradigm. In the
retrieval part, we cascade the architecture of ResNet101-GeM-ArcFace and employ
DBSCAN followed by spatial verification to obtain a better initial coarse pose.
We design a module called observation constraints, which combines geometry
information and semantic consistency for filtering outliers. Comprehensive
experiments are conducted on open datasets, including retrieval on R-Oxford5k
and R-Paris6k, semantic segmentation on Cityscapes, localization on Aachen
Day-Night and InLoc. By creatively modifying separate modules in the total
pipeline, our method achieves many performance improvements on the challenging
localization benchmarks.
- Abstract(参考訳): 正確な視覚的再ローカライゼーションは、拡張現実、仮想現実、ロボット工学、自動運転など、多くの人工知能アプリケーションにとって非常に重要である。
そこで本研究では,画像検索と意味的一貫性,幾何学的検証を組み合わせたrlocsと呼ばれる統合的な視覚再局在化手法を提案する。
ローカライゼーションパイプラインは粗大なパラダイムとして設計されている。
検索部では、ResNet101-GeM-ArcFaceのアーキテクチャをカスケードし、DBSCANと空間検証を用いて、より優れた初期粗いポーズを得る。
我々は,幾何学的情報と意味的一貫性を組み合わせた観測制約と呼ばれるモジュールを設計した。
r-oxford5kとr-paris6kの検索、都市景観の意味セグメンテーション、アーヘンの昼夜のローカライズ、inlocなど、オープンデータセットに関する包括的な実験が行われた。
パイプライン全体のモジュールを創造的に修正することで,課題となるローカライゼーションベンチマークにおいて,多数の性能改善を実現する。
関連論文リスト
- Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - SQLNet: Scale-Modulated Query and Localization Network for Few-Shot
Class-Agnostic Counting [71.38754976584009]
CAC(class-agnostic counting)タスクは、最近、任意のクラスの全てのオブジェクトを、入力画像にいくつかの例を付与してカウントする問題を解くために提案されている。
我々は、スケール変調クエリーおよびローカライズネットワーク(Net)と呼ばれる、新しいローカライズベースのCACアプローチを提案する。
クエリとローカライゼーションの段階において、模範者のスケールを完全に探求し、各オブジェクトを正確に位置付けし、その近似サイズを予測することで、効果的なカウントを実現している。
論文 参考訳(メタデータ) (2023-11-16T16:50:56Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
本稿では,新しいトランスフォーマーニューラルネットワークモデルを提案する。
いくつかのベンチマーク・クロスビュー・ジオローカライズ・データセットの実験により、我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-03-28T01:58:03Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
クロスビュージオローカライゼーションは、参照ジオタグ付き空中画像データベースとマッチングすることで、クエリーグラウンド画像の位置を推定することを目的としている。
最近の研究は、クロスビューなジオローカライゼーションベンチマークにおいて顕著な進歩を遂げている。
しかし、既存の手法は依然としてクロスエリアベンチマークのパフォーマンスの低下に悩まされている。
論文 参考訳(メタデータ) (2022-12-08T04:54:01Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Robust Change Detection Based on Neural Descriptor Fields [53.111397800478294]
我々は、部分的に重なり合う観測結果とノイズのある局所化結果に頑健なオブジェクトレベルのオンライン変化検出手法を開発した。
形状符号の類似性を利用して物体を連想させ, 局所的な物体近傍の空間配置を比較することにより, 観測重複や局所雑音に対する頑健性を示す。
論文 参考訳(メタデータ) (2022-08-01T17:45:36Z) - Combining Local and Global Pose Estimation for Precise Tracking of
Similar Objects [2.861848675707602]
類似・非テクスチャオブジェクトに対する多目的6D検出・追跡パイプラインを提案する。
合成画像のみを訓練した新しいネットワークアーキテクチャは、複数のオブジェクトの同時ポーズ推定を可能にする。
建設現場における実際のAR支援アプリケーションにおいて,システムがどのように利用できるかを示す。
論文 参考訳(メタデータ) (2022-01-31T14:36:57Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - DASGIL: Domain Adaptation for Semantic and Geometric-aware Image-based
Localization [27.294822556484345]
環境変化下での視覚的長期化は、自律走行と移動ロボット工学において難しい問題である。
視覚的位置認識のための多スケール潜在埋め込み表現に幾何学的および意味的情報を融合する新しいマルチタスクアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-01T17:44:25Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。