Retrieval and Localization with Observation Constraints
- URL: http://arxiv.org/abs/2108.08516v1
- Date: Thu, 19 Aug 2021 06:14:33 GMT
- Title: Retrieval and Localization with Observation Constraints
- Authors: Yuhao Zhou, Huanhuan Fan, Shuang Gao, Yuchen Yang, Xudong Zhang,
Jijunnan Li, Yandong Guo
- Abstract summary: We propose an integrated visual re-localization method called RLOCS.
It combines image retrieval, semantic consistency and geometry verification to achieve accurate estimations.
Our method achieves many performance improvements on the challenging localization benchmarks.
- Score: 12.010135672015704
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate visual re-localization is very critical to many artificial
intelligence applications, such as augmented reality, virtual reality, robotics
and autonomous driving. To accomplish this task, we propose an integrated
visual re-localization method called RLOCS by combining image retrieval,
semantic consistency and geometry verification to achieve accurate estimations.
The localization pipeline is designed as a coarse-to-fine paradigm. In the
retrieval part, we cascade the architecture of ResNet101-GeM-ArcFace and employ
DBSCAN followed by spatial verification to obtain a better initial coarse pose.
We design a module called observation constraints, which combines geometry
information and semantic consistency for filtering outliers. Comprehensive
experiments are conducted on open datasets, including retrieval on R-Oxford5k
and R-Paris6k, semantic segmentation on Cityscapes, localization on Aachen
Day-Night and InLoc. By creatively modifying separate modules in the total
pipeline, our method achieves many performance improvements on the challenging
localization benchmarks.
Related papers
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - SQLNet: Scale-Modulated Query and Localization Network for Few-Shot
Class-Agnostic Counting [71.38754976584009]
The class-agnostic counting (CAC) task has recently been proposed to solve the problem of counting all objects of an arbitrary class with several exemplars given in the input image.
We propose a novel localization-based CAC approach, termed Scale-modulated Query and Localization Network (Net)
It fully explores the scales of exemplars in both the query and localization stages and achieves effective counting by accurately locating each object and predicting its approximate size.
arXiv Detail & Related papers (2023-11-16T16:50:56Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database.
Recent works achieve outstanding progress on cross-view geo-localization benchmarks.
However, existing methods still suffer from poor performance on the cross-area benchmarks.
arXiv Detail & Related papers (2022-12-08T04:54:01Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Combining Local and Global Pose Estimation for Precise Tracking of
Similar Objects [2.861848675707602]
We present a multi-object 6D detection and tracking pipeline for potentially similar and non-textured objects.
A new network architecture, trained solely with synthetic images, allows simultaneous pose estimation of multiple objects.
We show how the system can be used in a real AR assistance application within the field of construction.
arXiv Detail & Related papers (2022-01-31T14:36:57Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
Training networks to perform metric relocalization traditionally requires accurate image correspondences.
We propose a self-supervised solution, which exploits a key insight: localizing a query image within a map should yield the same absolute pose, regardless of the reference image used for registration.
We evaluate our framework on synthetic and real-world data, showing our approach outperforms other supervised methods when a limited amount of ground-truth information is available.
arXiv Detail & Related papers (2020-11-01T19:24:27Z) - DASGIL: Domain Adaptation for Semantic and Geometric-aware Image-based
Localization [27.294822556484345]
Long-term visual localization under changing environments is a challenging problem in autonomous driving and mobile robotics.
We propose a novel multi-task architecture to fuse the geometric and semantic information into the multi-scale latent embedding representation for visual place recognition.
arXiv Detail & Related papers (2020-10-01T17:44:25Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.