Energy levels estimation on a quantum computer by evolution of a
physical quantity
- URL: http://arxiv.org/abs/2108.08873v1
- Date: Thu, 19 Aug 2021 18:39:54 GMT
- Title: Energy levels estimation on a quantum computer by evolution of a
physical quantity
- Authors: Kh. P. Gnatenko, H. P. Laba, V. M. Tkachuk
- Abstract summary: We show that the time dependence of mean value of a physical quantity is related with the transition energies of a quantum system.
We propose a method for determining energy levels of physical systems on a quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the time dependence of mean value of a physical quantity is
related with the transition energies of a quantum system. In the case when the
operator of a physical quantity anticommutes with the Hamiltonian of a system,
studies of the evolution of its mean value allow determining the energy levels
of the system. On the basis of the result, we propose a method for determining
energy levels of physical systems on a quantum computer. The method opens a
possibility to achieve quantum supremacy in solving the problem of finding
minimal or maximal energy of Ising model with spatially anisotropic interaction
using multi-qubit quantum computers. We apply the method for spin systems (spin
in magnetic field, spin chain, Ising model on squared lattice) and realize it
on IBM's quantum computers.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Characterizing a non-equilibrium phase transition on a quantum computer [0.0]
We use the Quantinuum H1-1 quantum computer to realize a quantum extension of a simple classical disease spreading process.
We are able to implement large instances of the model with $73$ sites and up to $72$ circuit layers.
This work demonstrates how quantum computers capable of mid-circuit resets, measurements, and conditional logic enable the study of difficult problems in quantum many-body physics.
arXiv Detail & Related papers (2022-09-26T17:59:06Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
We develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules.
We demonstrate our method on IBM superconducting quantum processors.
We conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime.
arXiv Detail & Related papers (2021-10-03T09:56:47Z) - Detection of energy levels of a spin system on a quantum computer by
probe spin evolution [0.0]
Energy levels of spin systems are found on IBM's quantum computer ibmq-bogota.
The method is efficient for estimation of the energy levels of many-spin systems.
arXiv Detail & Related papers (2021-09-23T14:35:24Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.