MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples
in Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2108.09274v1
- Date: Fri, 20 Aug 2021 17:10:39 GMT
- Title: MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples
in Pedestrian Trajectory Prediction
- Authors: Patrick Dendorfer, Sven Elflein, Laura Leal-Taixe
- Abstract summary: We propose a multi-generator model for pedestrian trajectory prediction.
Each generator specializes in learning a distribution over trajectories routing towards one of the primary modes in the scene.
A second network learns a categorical distribution over these generators, conditioned on the dynamics and scene input.
This architecture allows us to effectively sample from specialized generators and to significantly reduce the out-of-distribution samples compared to single generator methods.
- Score: 0.6445605125467573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pedestrian trajectory prediction is challenging due to its uncertain and
multimodal nature. While generative adversarial networks can learn a
distribution over future trajectories, they tend to predict out-of-distribution
samples when the distribution of future trajectories is a mixture of multiple,
possibly disconnected modes. To address this issue, we propose a
multi-generator model for pedestrian trajectory prediction. Each generator
specializes in learning a distribution over trajectories routing towards one of
the primary modes in the scene, while a second network learns a categorical
distribution over these generators, conditioned on the dynamics and scene
input. This architecture allows us to effectively sample from specialized
generators and to significantly reduce the out-of-distribution samples compared
to single generator methods.
Related papers
- Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
We propose a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction.
A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction.
Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
arXiv Detail & Related papers (2023-11-25T03:55:06Z) - Flexible Multi-Generator Model with Fused Spatiotemporal Graph for
Trajectory Prediction [2.1638817206926855]
Trajectory prediction plays a vital role in automotive radar systems.
Generative adversarial networks with the ability to learn a distribution over future trajectories tend to predict out-of-distribution samples.
We propose a trajectory prediction framework, which can capture the social interaction and model disconnected variations of pedestrian trajectories.
arXiv Detail & Related papers (2023-11-06T02:46:05Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
In this paper, we aim to forecast a future trajectory distribution of a moving agent in the real world, given the social scene images and historical trajectories.
We learn the distribution with symmetric cross-entropy using occupancy grid maps as an explicit and scene-compliant approximation to the ground-truth distribution.
In experiments, our method achieves state-of-the-art performance on the Stanford Drone dataset and Intersection Drone dataset.
arXiv Detail & Related papers (2022-03-31T09:24:32Z) - THOMAS: Trajectory Heatmap Output with learned Multi-Agent Sampling [2.424910201171407]
We present a unified model architecture for fast and simultaneous agent future heatmap estimation.
generating scene-consistent predictions goes beyond the mere generation of collision-free trajectories.
We report our results on the Interaction multi-agent prediction challenge and rank $1st$ on the online test leaderboard.
arXiv Detail & Related papers (2021-10-13T10:05:47Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Diverse Sampling for Normalizing Flow Based Trajectory Forecasting [34.01303881881315]
We propose Diversity Sampling for Flow (DSF) to improve the quality and diversity of trajectory samples from a pre-trained flow model.
DSF is easy to implement, and we show that it offers a simple plug-in improvement for several existing flow-based forecasting models.
arXiv Detail & Related papers (2020-11-30T18:23:29Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Unsupervised multi-modal Styled Content Generation [61.040392094140245]
UMMGAN is a novel architecture designed to better model multi-modal distributions in an unsupervised fashion.
We show that UMMGAN effectively disentangles between modes and style, thereby providing an independent degree of control over the generated content.
arXiv Detail & Related papers (2020-01-10T19:36:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.